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Modeling for DDDAS

U model # reality
O All models are wrong ()

O Types of model errors
O Parameter errors
Q Errors in dynamics----wrong or missing
O Everything is uncertain to some extent

J But some models are useful! ©
O Some are more useful than others

U The “accuracy” of a model is meaningful
only relative to its intended purpose

L Model refinement
O Model + data = better model
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Model Refinement = Adiptive Control! ~. MichiganEngineering
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- e Retrospective Cost Model Refinement )
i Circuit Experiment
Current and voltage drops

are NOT measured

Viin
/ +
O O
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O Series RLC circuit -
—— Cld R
L
Q Driving signal is circuit voltage I
This signal
U The only measurement is the IS measured

voltage drop across the resistor
These parameters are

unknown and inaccessible
U The inductance and capacitance

are assumed to be unknown Ly +Rx+x/Cld =V lin

Viout =Rx
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Retrospective Cost Model Refinement
Estimates of Land C
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Retrospective Cost Model Refinement
Battery Health Monitoring
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U Objective: Monitor battery health by estimating film growth
at the negative electrode using charging measurements
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Space Weather MOdEIing P MichiganEngineering

m  Problem
o Unknown changes to the atmospheric density degrade the accuracy of GPS
and impede the ability to track space objects
n Goals

o Use input reconstruction to estimate atmospheric drivers that determine the
evolution of the ionosphere-thermosphere

o Use model refinement to improve the accuracy of atmospheric models
= Achieve more accurate data assimilation
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Space weather affects the terrestrial environment

Space weather disturbances interfere with satellite and
radio communications and operations

Orbit Determination

Space Debris o Orbital prediction error is principally caused by problems in
Extreme space weather events can knock out the power estimating atmospheric drag

grid, melt electronics, damage satellites, and disrupt polar

o Predicting atmospheric drag requires prediction of the
atmospheric density and understanding ion-neutral
interactions

air routes

o Measurements in the upper atmosphere are primarily
space-based



Monitoring Space Weather -, MichiganEngineering

o Satellites CHAMP

o Solar Missions CHAllenging Mini-satellite Payload
o Magnetospheric Missions
o Atmospheric Missions

o Ground-Based Observatories
o lonospheric characteristics and disturbances il

+ accélérométre STAR

. . Launched 15 July’00 .-
a AtmOSphenC WlndS m ﬁ Re'entered 12 Sept’10" ¥ g

o Solar, magnetic, and current indices

* récepteur GPS Bla

o Monitoring and Data Centers Gravity Recovery and Climate Experiment
o NOAA Space Weather Prediction Center
o Heliophysics Events Knowledge base
o Dominion Observatory in Penticton, British Columbia, Canada
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GITM
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U Resolution is specified by the number of blocks
covering the Earth

Q Each block has 4050 cells
9 longs X 9 lats X 50 alts

O Each cell as 28 states
U 7 neutrals, 8 ions, 3 temperatures,
7 neutral velocities, 3 ion velocities
Q Each block has 113,400 states

U Typical grids are
(longitude blocks)x(latitude blocks):

U 2x2 (4 processors)
Testing purposes, 10°%20°
453,600 states

U 8x8 (64 processors)
Low resolution physical runs, oy co
7,257,600 states

U 8x12 (96 processors)
High resolution physical runs, co 1 g7°
10,886,400 states

2x2 Grid of the Earth (4 blocks)

GITM Is Fully Parallelized
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Estimate Photoelectron Heating Efficiency Py |
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Vertical Neutral Dynamics
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Photoelectron Heating Efficiency

is the solar extreme ultraviolet (EUV)

heating
is the photoelectron heating---the heat

released by secondary photoelectrons




Estimate Photoelectron Heating Efficiency
Using Artificial Data

MichiganEngineering

T & NOTE: Thisis a o . o
. purely simulation This signal is the artificial
test of RCMR <+— neutral density along the
- faux CHAMP orbit
/ CHAMP
‘ CHAllenging Mini-satellite Payload
This signal is the MOdeled o i
measured F10.7 PHE This signal is the
calculated neutral
l density along the faux|
CHAMP orbit v+
#T
\|
z=yl0 —y 0
This signal is the This error signal
retrospectively d X measures the
optimized PHE N model mismatch
Estimated
A Y
\ Retrospective Optimization

o PHE is an unknown parameter in GITM

o To estimate PHE, we compute neutral density along CHAMP'’s orbit at the fixed
altitude of 400 km, and RCMR uses this artificial data
o As a quality metric for the state estimates, we compare estimates of the neutral density
along GRACE's orbit at a constant altitude of 400 km
12



Estimate Photoelectron Heating Efficiency
Using Artificial Data

a The 90-minute average of the estimated neutral density converges to the artificial
neutral density along the CHAMP and GRACE orbits at 400 km altitude

-12
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Photoelectron Heating Efficiency

Estimate Photoelectron Heating Efficiency
Using Artificial Data
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o The RCMR estimate of PHE converges to the artificial (modeled) value of PHE

Photoelectron Heating Efficiency Estimate
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Modeled PHE
Initial Guess —
Estimated PHE
I

Time (Days)
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L V¥ Estimate Photoelectron Heating Efficiency
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L Using Artificial Data
PHE convergence yields convergent state estimates
Temperature Ar mixing ratio
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Estimate Photoelectron Heating Efficiency

Using Artificial Data

Q We study the robustness of RCMR to the choice of H
O The estimate converges to the true value of PHE for a wide range of H
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Estimate Photoelectron Heating Efficiency
Using Real Satellite Data
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This signal is the
<+— neutral density
from real CHAMP

-——* 2 -
| 1
! Real Earth |
1 ! :
This signal is the | _Real PHE [« This signal is the Real CHAMP
measured F10.7 calculated neutral
4 density along the
CHAMP orbit % &
N\
z=yl0 —yJ0
. . This error signal
This signal is the _ measures the
retrospectively X model mismatch
optimized PHE Est.mated
|
\ Retrospective Optimization

U We estimate PHE using neutral density measurements from the real CHAMP satellite
o We assimilate real CHAMP satellite data from 2002-11-24 to 2002-12-06

O Neutral density measurements from GRACE are used as a gquality metric
O Butthese data are NOT assimilated

M Real GRACE
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Estimate Photoelectron Heating Efficiency
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Using Real Satellite Data -
RCMR minimizes the error z in the CHAMP neutral density
x10™"

Uy Real CHAMP neutral density data
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Estimate Photoelectron Heating Efficiency

Using Real Satellite Data

S
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o RCMR determines the value of PHE that minimizes the error z in the
neutral density estimate

0.18

0.16

(5] - N L

Photoelectron heating efficiency

0.04

0.02
0

Initial PHE guess

Time (days)

PHERCMR
Estimated PHE — Initial guess
2 s 6 5 10 12 14 6
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90 minute averaged p
R

o
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Estimate Photoelectron Heating Efficiency

Using Real Satellite Data
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RCAISE also corrects the neutral density at GRACE’s location

x10™"°
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RCAISE estimate
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GRACE

Gravity Recovery and Climate Experiment

GRACE neutral density
data is NOT assimilated

This data is used only as

a quality metric

This error may be due to
what scientists believe is a
calibration error in the
GRACE data
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Estimate Eddy Diffusion Coefficient
in GITM using Total Electron Content
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S

O Total electron content (or TEC) is an important descriptive quantity for the ionosphere.

O TEC is the total number of electrons integrated between two points, along a tube of one meter
squared cross section. Units are 1 TECU=,y76 mr2

Total Electron Cantent Unais x 10" m™

CORS = Continuously Operating Reference Stations.
GPS/Met = Ground-Based GPS Meteorology.
RTIGS = Real Time International GNSS Service.

GNSS = Global Navigation Satellite Systems.

24-Nov-2013 rom 2115102130 UT  NOAASWPC Boulder, CO USA (op.ver: 1.0)
TEC plot for the continental USA, made on 11/24/2013



Estimate Eddy Diffusion Coefficient
in GITM using Total Electron Content

Solar Flux and tides \

w

GITM with
EDC =1750

TEC/meas

This signal is calculated

This signal is computed
by retrospective v
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1750

EDC = 1750 is fixed in the
simulated measurement case
1700

1650

1600

Eddy Diffusion coefficient (EDC)

1550

Initial EDC guess

1500

Estimate Eddy Diffusion Coefficient
in GITM using Total Electron Content
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Estimate Eddy Diffusion Coefficient JMI MichiganRingineering
in GITM usmg Total Electron Content
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RCMR/RCAISE versus Standard Methods - MichiganEngineering

0 RCAISE does not provide statistical error measures
O No estimate of covariance or probability distribution
O Uses no priors---not Bayesian
O Uses no ensemble---only a single simulation
O Uses only linear least squares techniques
O Requires no adjoint code (none is available for GITM)
0 Computationally inexpensive
O Adds minutes to multi-hour ensemble data assimilation
O But requires estimates of H's---determined by numerical testing
O May be useful as an adjunct to ensemble codes

O For model refinement or input estimation in strongly driven systems-----
systems whose evolution is primarily due to external inputs

25



Latest in RCMR — Concurrent Optimization -, MichiganEngineering

O RCMR requires minimal modeling information (H values)

Q Since no analytical model is available, this modeling information has been
found by numerical testing

Q For EDC estimation this is tedious
Q We seek an efficient technique for concurrent optimization

O For adaptive control we have developed concurrent optimization

O Frantisek Sobolic, Ankit Goel, Dennis S. Bernstein, " Retrospective-Cost
Adaptive Control Using Concurrent Controller and Target-Model
Optimization," submitted to ACC 2016.
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Questions?
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