

A software library for space science data analysis, modelling and space weather forecasting

SpacePy team: <u>Steve Morley¹</u>; Dan Welling²; Jon Niehof³; Brian Larsen[!]

1 – Los Alamos National Laboratory

2 – University of Michigan

3 – University of New Hampshire

Additional contributions to SpacePy from more people than I have space here...

UNCLASSIFIED

Why Open Source? Rationale for SpacePy

Free software

- No licence required
- Widely used programming language
- Source code available under version control
 - No "black box" routines
 - Bug trackers, feature requests, quick feedback
- Common routines available to whole community
 - Work is reproducible
 - Public unit test framework
- Good for scripted jobs
 - Python has easy multi-processing capabilities

UNCLASSIFIED

A Data Model Similar to HDF5 Model

- Two basic datatypes:
 - Group
 - Dataset
- Both have metadata
- Groups can contain groups or datasets
- Datasets are array-like
- Supports many metadata standards

• Los Alamos

EST. 1943

Pacepy

Conversion via a common data model

File Types

"Pmin_gsm":	: { "DESCRIPTION":	"Location of minimum- B point (in GSM coords).",
_	"NAME":	"Pmin_gsm",
	"TITLE":	"Minimum- B point (in GSM Coordinates)",
	"LABEL":	"TO1S Pmin_gsm [R_E]",
	"UNITS":	"R_E",
	"DIMENSION":	[3],
	"START_COLUMN":	100,
	"ELEMENT_NAMES":	["Pmin_gsm_x", "Pmin_gsm_y", "Pmin_gsm_z"],
	ELEMENT_LABELS":	["T01S Pmin_gsm_x [R_E]", "T01S Pmin_gsm_y
_E]", "T01S	<pre>Pmin_gsm_z, R_E"],</pre>	
	"FILL_VALUE":	-1e31 }
	"Pmin_gsm": _E]", "T01S	<pre>"Pmin_gsm": { "DESCRIPTION":</pre>

JSON-headed ASCII working group:

Jeremy Faden (Autoplot), Steve Morley (SpacePy), Brian Larsen (SpacePy)

Specification at: github.com/JSONheadedASCII Reader/writer in: spacepy.datamodel

UNCLASSIFIED

In use: Plot

Solar wind data and indices

Satellite data and orbits

Ephemeris and particle data read using pycdf and datamodel modules

> plot module provides colour blindfriendly colourmaps (from new matplotlib)

In use: **PyBATS**

Space Weather Modeling Framework

Smart date/time labelling through SpacePy plot module

pybats also manages other SWMF data: rim rampy pwom

Los Alamos

FST 1943

Solar wind data through SpacePy omni module

UNCLASSIFIED

In Use: SeaPy Analysis of GPS particle data

UNCLASSIFIED

FST 1943

In Use: SeaPy Analysis of GPS particle data

Roy. Soc. A, 2010

Morley et al., Proc.

1-D Superposed Epoch Analysis in seapy module

Bootstrap confidence intervals calculated using SpacePy's poppy module

empiricals module also provides:

- Pressure-corrected Dst calculation
 - Burton et al. (1975)
 - O'Brien & McPherron (2002)
 - Borovsky and Denton (2010)
- Empirical plasmapause models
 - Carpenter & Anderson (1992)
 - Moldwin et al. (2002)

UNCLASSIFIED

Models Included

An Incomplete Selection

SpacePy

- B-field models from IRBEM library
- AE-8/AP-8 (IRBEM)
- Plasmapause
 - Carpenter & Anderson
 - Moldwin et al.
- Magnetopause standoff
- L* neural network
- 1-D RB diffusion model
 - Ensemble Kalman filter

IRBEM

- CDip; IGRF; Jenson & Cain; *Chen* & *Schulz*
- T87s; T87I; T89c; T96; T02; TSK03; TS04; TS07
- Ostapenko & Maltsev; Alexeev
- Olsen-Pfitzer
 - Static; Dynamic
- Mead-Fairfield

Tools Included

A Very Incomplete Selection

- Tracing
 - Field lines; Drift shells
- Superposed epoch analysis
 - 1D; 2D
- Bootstrap CI
- Association analysis
- Windowing mean (time based, points based)
- Time & Coordinate conversions
- Quaternion Math

- Full interface to NASA CDF library
- Interface to IRBEM library
 - LANLGeoMag in future versions (hopefully)
- Plot "helper" routines
 - add logo
 - automated time tick formatting
 - rebinning/spectrograms
 - plot styles

UNCLASSIFIED

Where to get code and help... And what's coming next?

- SpacePy (current v0.1.5; new release imminent)
 - We support Linux, Mac and Windows
 - On Mac, Linux we recommend installing from one of our repositories
 - Code repository (git) on SourceForge

sourceforge.net/projects/spacepy

- Mirrored repository (git) on GitHub <u>github.com/spacepy/</u>
- Some Python/SpacePy/PyBATS resources:

www-personal.umich.edu/~dwelling/python/

