# **Three Myths about Empirical Models**

- Myth #1: There is no physics in empirical models.
- Myth #2: Empirical models cannot describe short-term variations.
- Myth #3: Empirical models are not very useful scientifically.
- Bonus Myth: Scatter in the data will obscure systematic behavior

U.S.NAVAL RESEARCH LABORATORY John Emmert Space Science Division

Naval Research Laboratory

<u>john.emmert@nrl.navy.mil</u>

(With helpful input from the workshop speakers)

Acknowledgement: This work was supported by the Chief of Naval Research

## Myth #1: There is no physics in empirical models.

#### **Reality:**

Almost all major empirical models have foundational physical constraints. Examples:

• International Geomagnetic Reference Field (IGRF): No magnetic source terms above Earth's surface.  $\nabla^2 V = 0$ 

$$\mathbf{B} = -\vec{\nabla}V$$

• MSIS, DTM atmosphere models: Hydrostatic and diffusive equilibrium (connects temperature and density data).

$$dP = -\rho g dz$$

#### **Converse myth: There is no data in first-principles models**

Reality: All first-principles models employ empirical parameterizations (including major empirical models) to represent:

- Subgrid-scale processes
- Background conditions
- Boundary conditions
- Initial conditions

# Myth #2: Empirical models cannot describe short-term variations (aka "It's just climatology").

#### **Reality:**

- Empirical models can describe the average observed <u>response</u> to geophysical drivers, not just the time-averaged state of the system.
- If the drivers are changing rapidly, the empirical model will change rapidly, too.

Example: Weimer high-latitude electric potential model



# Myth #3: Empirical models are not very useful scientifically.

#### **Reality:**

Empirical models are indispensable scientific tools whose diverse uses include:

- Prediction of geophysical conditions at specific times
- A distilled view of the historical observational record
- A benchmark for assessing new measurement techniques and first-principles models
- Boundary and initial conditions for first-principles models
- Interpolation among sparse observations
- Attribution of observed variations
- First guess (Bayesian prior) for measurement retrievals
- Background conditions for other models (e.g., wave propagation)

Empirical model papers are among the most widely cited in the literature...



### Bonus Myth: Scatter in the data will obscure systematic behavior

#### **Reality:**

- Empirical models successfully and fundamentally describe the <u>average</u> (climatological) observed behavior of the system, including short-term systematic responses.
- Stochastic or chaotic variations (i.e. weather) are largely averaged out in the processing.
- From a systems perspective, empirical models of climate can be viewed as follows:

$$Y_{j} = \mu_{j} \left( x_{1}, x_{2}, x_{3}, \dots, x_{n} \right) + \mathcal{E}_{j}$$
Climate variable *j*
• State properties  
(e.g., temperature)
• Variational  
properties (e.g.,  
tidal amplitude)
• Climate of *j*
• Deterministic
• Represents mean  
response of  
system to drivers
• Expectation value
• Climate of *j*
• Drivers
• Functional form  
can be nonlinear
• Can include time  
history of drivers
• Includes deterministic  
effects omitted from  $\mu$ .

When comparing data or first-principles models with empirical models, keep in mind:

- Disagreement between a small number of measurements and an empirical model does not invalidate the empirical model.
- Agreement over a short time period between first-principles and empirical models does not validate the first-principals model.
- Averaged point-for-point comparisons provide the most rigorous assessment of datamodel biases and model-model biases.
- The uncertainty of the <u>mean</u> is the relevant statistic.

### **Geospace Empirical Model Tutorials**

| Time | Speaker           | Title                                                 | Model Output                                                                                  |                 |  |
|------|-------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|--|
| 1330 | John<br>Emmert    | Overview: 3 Myths about Empirical Models              |                                                                                               |                 |  |
| 1335 | Stefan<br>Maus    | International Geomagnetic Reference<br>Field (IGRF)   | Background magnetic field vector                                                              |                 |  |
| 1352 | John<br>Emmert    | NRLMSIS Atmosphere Temperature and Composition Model  | Atmospheric neutral temperature, density, and composition                                     | <b>€</b> …      |  |
| 1407 | Jens<br>Oberheide | Climatological Tidal Model of the Thermosphere (CTMT) | Diurnal and semidiurnal tidal amplitude and phase (temperature, wind, density)                | <del>&lt;</del> |  |
| 1424 | Doug<br>Drob      | Horizontal Wind Model (HWM)                           | Atmospheric horizontal neutral wind vector                                                    | ←               |  |
| 1439 | Dieter<br>Bilitza | International Reference Ionosphere<br>(IRI)           | Electron and ion density, composition, and temperature; vertical electron column density      | 44              |  |
| 1456 | Dan<br>Weimer     | High-latitude Electric field and<br>Current Models    | Electric potential, field-aligned currents,<br>Poynting flux, geomagnetic field perturbations | ¢               |  |
| 1513 | Paul<br>O'Brien   | AE-9/AP-9 Radiation Belt Models                       | Energetic electron and proton fluxes                                                          | ~               |  |

Tutorials will cover: • Model arguments, formulation, and included physical constraints

- Assimilated data
- Recent and planned improvements and upgrades
- Model operation and limitations

#### A (non-exhaustive) bibliography of other geospace empirical models

| Name or<br>Author    | Model Output                                                      | Reference(s)                                                                                                                                                                                                                                                                                         |
|----------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lean                 | Atmosphere ozone<br>column density                                | Lean, J. L. (2014), Evolution of Total Atmospheric Ozone from 1900 to 2100 Estimated with Statistical Models, J. Atmos. Sci., 71, 1956–1984.                                                                                                                                                         |
| NOEM                 | Lower thermosphere nitric oxide density                           | Marsh, D. R., S. C. Solomon, and A. E. Reynolds (2004), Empirical model of nitric oxide in the lower thermosphere, J. Geophys. Res., 109, A07301, doi:10.1029/2003JA010199.                                                                                                                          |
| DTM-2013             | Thermosphere<br>temperature, density,<br>and composition          | Bruinsma, S. L. (2015), The DTM-2013 thermosphere model, J. Space Weather Space Clim., 5, A1, doi:10.1051/swsc/2015001.                                                                                                                                                                              |
| JB2008               | Thermosphere mass<br>density                                      | Bowman, B. R., et al. (2008), A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, AIAA/AAS Astrodynamics Specialist Conference, 18–21 August 2008, Honolulu, Hawaii, paper AIAA 2008-6438.                                                                   |
| Zoennchen            | Exosphere hydrogen<br>density                                     | Zoennchen, J. H., U. Nass, and H. J. Fahr (2013), Exospheric hydrogen density distributions for equinox and summer solstice observed with TWINS1/2 during solar minimum, Ann. Geophys., 31, 513–527.                                                                                                 |
| Mukhtarov            | lonosphere electron<br>column density (total<br>electron content) | Mukhtarov, P., D. Pancheva, B. Andonov, and L. Pashova (2013), Global TEC maps based on GNSS data: 1. Empirical background TEC model, J. Geophys. Res. Space Physics, 118, 4594–4608, doi:10.1002/jgra.50413.                                                                                        |
| Scherliess/<br>Fejer | Low-latitude Ionosphere<br>plasma drifts                          | Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region vertical drift<br>model, J. Geophys Res., 104, 6829–6842.<br>Fejer, B. G., and L. Scherliess (1997), Empirical models of storm time equatorial zonal electric<br>fields, J. Geophys Res., 102, 24,047–24,056. |
| Stening/<br>Winch    | lonosphere quiet-time<br>electric currents                        | Stening R. J., and D. E. Winch (2013), The ionospheric Sq current system obtained by spherical harmonic analysis, J. Geophys. Res. Space Physics, 118, 1288–1297, doi:10.1002/jgra.50194.                                                                                                            |
| Hardy                | lonosphere<br>Conductivity, Auroral<br>Power                      | Hardy, D. A., M. S. Gussenhoven, R. Raistrick, and W. J. McNeil (1987), Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12,275–12,294.                                                                        |
| Cousins              | High-latitude electric<br>potential                               | Cousins, E. D. P., and S. G. Shepherd (2010), A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements, J. Geophys Res., 115, A12329, doi:10.1029/2010JA016017.                                                                                                |

#### A (non-exhaustive) bibliography of other geospace empirical models (continued)

| Name or<br>Author      | Model Output                                    | Reference(s)                                                                                                                                                                                                                                 |
|------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Newell                 | Auroral Power and<br>Probability                | Newell, P. T., T. Sotirelis, and S. Wing (2010), Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 115, A03216, doi:10.1029/2009JA014805.                                                               |
| Papitashvili           | Field-aligned Currents                          | Papitashvili, V. O., F. Christiansen, and T. Neubert (2002), A new model of field-aligned currents derived from high-precision satellite magnetic field data, Geophys. Res. Lett., 29, 1683, doi:10.1029/2001GL014207.                       |
| Cosgrove               | Poynting Flux                                   | Cosgrove, R. B., et al. (2014), Empirical model of Poynting flux derived from FAST data and a cusp signature, J. Geophys. Res. Space Physics, 119, 411–430, doi:10.1002/2013JA019105.                                                        |
| Sheeley                | Plasmasphere Plasma<br>Density                  | Sheeley, B. W., M. B. Moldwin, H. K. Rassoul, and R. R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631-25,641.                                                       |
| Brautigam-<br>Albert   | Radiation Belt Radial<br>Diffusion Coefficients | Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309.                                                       |
| Ozeke                  | Radiation Belt Radial<br>Diffusion Coefficients | Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. Space Physics, 119, 1587-1605, doi:10.1002/2013JA019204. |
| Weigel                 | Ground-level Magnetic<br>Field Perturbations    | Weigel, R. S., A. J. Klimas, and D. Vassiliadis (2003), Solar wind coupling to and predictability of ground magnetic fields and their time derivatives, J. Geophys. Res., 108(A7), 1298, doi:10.1029/2002JA009627.                           |
| Tsyganenko             | Magnetosphere<br>Magnetic Field                 | Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798.                                                      |
| Olson-Pfitzer<br>Quiet | Magnetosphere<br>Magnetic Field                 | W.P. Olson, K.A. Pfitzer, Magnetospheric magnetic field modeling, Annual Scientific Report, Air<br>Force Office of Scientific Research contract F44620-75-C-0033, McDonnell Douglas Astronautics<br>Co., Huntington Beach, CA, 1977.         |
| Shue                   | Magnetopause<br>Location                        | Shue, JH., et al. (1998), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691.                                                                                                                          |