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What works and what doesn’t 
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What works and what doesn’t 

1   Strongly coupled thermosphere-ionosphere data assimilation 
approaches work better than weakly coupled approaches for 
both ionosphere and thermosphere specification and forecasting. 

 
2    Large amount of indirect measurements (e.g. from GPS) are 

more effective than small amount of direct measurements 
(e.g. from accelerometers) for global neutral mass density 
specification and forecasting. 

 
3    Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps 

to reduce unrealistic model error growth due to unbalanced 
increment than slow cycling (e.g. ~1 hour). 

 
4    State estimation works better for ionosphere and thermosphere 

specification and forecasting than forcing estimation, as forcing 
parameter estimation is challenging if underlying dynamics that 
control forcing evolution are not included in forecast models.      
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Forecast 

Update (Assimilation) 

WEAK COUPLING  only through forecast cycles  
STRONG COUPLING  through both assimilation/forecast steps  
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Coupled thermosphere-ionosphere data assimilation 



Data Assimilation Research Testbed     [Anderson et al., 2001, 2003, 2009] 
Thermosphere-Ionosphere Electrodynamics GCM    [Richmond et al.,1992]  

Observations 

Forecast 

Assimilation 

Ensemble square root filter with TIEGCM/DART 

Ensemble Filter - DART 

Model - TIEGCM 

irregular and sparse 

high-dimension 
dissipative forced dynamics 
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Cycling 



NCAR TIEGCM COSMIC or Ionosonde  
Electron Density 

Ensemble Forecasting 

Image Courtesy: UCAR & GFDL  
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[Matsuo and Araujo-Pradere, submitted, 2011] 

Electron density RMSE  

[Matsuo and Araujo-Pradere, RS, 2011] 

OSSEs – Global Ionosonde electron density 

WEAK COUPLING  

STRONG COUPLING  
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Strongly coupled ionosphere-thermosphere data assimilation 
yields better analysis than weakly coupled approaches    



STRONGER COUPLING 

[Hsu et al., JGR, 2015] 

Global RMSE 
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Electron density RMSE (global) 

Ensemble forecast initialized by COSMIC assimilation 

Estimation of  
neutral composition  
is the key 

initialization 

Strongly coupled data assimilation can extend  
predictability of the ionosphere more than 24 hours 



What works and what doesn’t 

1   Strongly coupled thermosphere-ionosphere data assimilation 
approaches work better than weakly coupled approaches for 
both ionosphere and thermosphere specification and forecasting. 

 
2    Large amount of indirect measurements (e.g. from GPS) are 

more effective than small amount of direct measurements 
(e.g. from accelerometers) for global neutral mass density 
specification and forecasting. 

 
3    Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps 

to reduce unrealistic model error growth due to unbalanced 
increment than slow cycling (e.g. ~1 hour). 

 
4    State estimation works better for ionosphere and thermosphere 

specification and forecasting than forcing estimation, as forcing 
parameter estimation is challenging if underlying dynamics that 
control forcing evolution are not included in forecast models.      
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NCAR TIEGCM 
COSMIC Electron Density 

CHAMP Mass Density  

Image Courtesy: UCAR, GFDL & GFZ  
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WEAK COUPLING 

Neutral mass density RMSE (over 320-450 km)  
OSSEs – CHAMP neutral mass density 
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[Matsuo et al., JGR, 2013] 

Error reduction only occurs in vicinity of CHMAP orbit  
with limited global impact 
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OSSEs – COSMIC electron density 

Global error reduction is achieved by assimilation of COSMIC 
data by coupled thermosphere-ionosphere data assimilation  
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OSSEs – COSMIC electron density 

Global error reduction is achieved by assimilation of COSMIC 
data by coupled thermosphere-ionosphere data assimilation  



0 6 12 18 24 30 36 42 48 54 60 66 72
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

x 10−10

Forecasting Hours

M
as

s 
de

ns
ity

 (K
g/

m
3 )

RMSE

Control Experiment
update fe− fO+ fT
update fe− fO+ fT fO fO2

update fe− fO+ fT fO fO2 fU fV

0 6 12 18 24 30 36 42 48 54 60 66 72
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

x 10−10

Forecasting Hours

M
as

s 
de

ns
ity

 (K
g/

m
3 )

RMSE

Control Experiment
update fe− fO+ fT
update fe− fO+ fT fO fO2

update fe− fO+ fT fO fO2 fU fV

Global RMSE 

initialization 

Impact of neutral temperature   
estimation lasts for 7 days  

Ensemble forecast initialized by COSMIC assimilation 

STRONGER COUPLING 

Neutral mass density RMSE (global) 

Strongly coupled data assimilation can extend  
predictability of the thermosphere more than 72 hours 



NCAR TIEGCM COSMIC Electron Density Profile 

CHAMP Mass Density  

Image Courtesy: UCAR, GFDL & GFZ  
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Mass density can be estimated from COSMIC electron density 
via coupled thermosphere-ionosphere data assimilation  

RMS difference 



What works and what doesn’t 

1   Strongly coupled thermosphere-ionosphere data assimilation 
approaches work better than weakly coupled approaches for 
both ionosphere and thermosphere specification and forecasting. 

 
2    Large amount of indirect measurements (e.g. from GPS) are 

more effective than small amount of direct measurements 
(e.g. from accelerometers) for global neutral mass density 
specification and forecasting. 

 
3    Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps 

to reduce unrealistic model error growth due to unbalanced 
increment than slow cycling (e.g. ~1 hour). 

 
4    State estimation works better for ionosphere and thermosphere 

specification and forecasting than forcing estimation, as forcing 
parameter estimation is challenging if underlying dynamics that 
control forcing evolution are not included in forecast models.      
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NCAR TIEGCM GPS Total Electron Content 

Image Courtesy: UCAR, GFDL & GFZ  

Ensemble Forecasting 
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TIEGCM 
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[Chen et al., JGR,  2016] 
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Rapid cycling helps reduce unrealistic model error growth  

[Chen et al., JGR, 2016] 

Forecast 

Assimilation 

Cycling 

60 minutes 

30 minutes 

10 minutes 



What works and what doesn’t 

1   Strongly coupled thermosphere-ionosphere data assimilation 
approaches work better than weakly coupled approaches for both 
ionosphere and thermosphere specification and forecasting. 

 
2    Large amount of indirect measurements (e.g. from GPS) are 

more effective than small amount of direct measurements (e.g. 
from accelerometers) for global neutral mass density specification 
and forecasting. 

 
3    Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps to 

reduce unrealistic model error growth due to unbalanced increment 
than slow cycling (e.g. ~1 hour). 

 
4    State estimation works better than forcing parameter estimation. 

Forcing parameter estimation is challenging if underlying dynamics 
that control forcing evolution are not included in the forecast model.      
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NCAR TIEGCM CHAMP Mass Density  

Image Courtesy: UCAR, GFDL & GFZ  
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[Matsuo et al., JGR, 2013] 

OSSEs – CHAMP neutral mass density 

Global error reduction achieved by forcing estimation 
     Filter degeneracy issues. Parameter estimation works well  
     when model errors originates only from parameter misspecification.  

Neutral mass density RMSE (over 320-450 km) 
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