ENSEMBLE DATA ASSIMILATION FOR UPPER ATMOSPHERE SPECIFICATION AND FORECASTING

Tomoko Matsuo

CU-CIRES/NOAA Space Weather Prediction Center

References: Matsuo and Araujo-Pradere, RS, 2011; Lee et al., JGR, 2012; Matsuo et al., JGR, 2013; Lee et al., 2013; Matsuo, AGU monograph, 2014; Hsu et al., JGR, 2014; Chartier et al., JGR, 2015; Chen et al., JGR, 2016 **Support:** AFOSR grant FA9550-13-1-0058

1 **Strongly coupled** thermosphere-ionosphere data assimilation approaches work better than **weakly coupled** approaches for both ionosphere and thermosphere specification and forecasting. Coupled thermosphere-ionosphere data assimilation

WEAK COUPLING only through forecast cycles **STRONG COUPLING** through both assimilation/forecast steps

Ensemble square root filter with TIEGCM/DART

Model - TIEGCM

$$\mathbf{x}_{t}^{(k)} = M_{t}(\mathbf{x}_{t-1}^{(k)}, F_{t} + \epsilon^{(k)})$$

high-dimension dissipative forced dynamics

Observations

$$\mathbf{y}_t = H(\mathbf{x}_t) + \boldsymbol{\epsilon}_t$$

irregular and sparse

Data Assimilation Research Testbed *[Anderson et al., 2001, 2003, 2009]* Thermosphere-Ionosphere Electrodynamics GCM *[Richmond et al., 1992]*

Image Courtesy: UCAR & GFDL

Strongly coupled ionosphere-thermosphere data assimilation yields better analysis than weakly coupled approaches

OSSEs – Global Ionosonde electron density

[Matsuo and Araujo-Pradere, RS, 2011]

Strongly coupled data assimilation can extend predictability of the ionosphere more than 24 hours

Ensemble forecast initialized by COSMIC assimilation

- 1 Strongly coupled thermosphere-ionosphere data assimilation approaches work better than weakly coupled approaches for both ionosphere and thermosphere specification and forecasting.
- 2 Large amount of indirect measurements (e.g. from GPS) are more effective than *small amount of direct measurements* (e.g. from accelerometers) for global neutral mass density specification and forecasting.

NCAR TIEGCM

CHAMP Mass Density

Image Courtesy: UCAR, GFDL & GFZ

Error reduction only occurs in vicinity of CHMAP orbit with limited global impact

OSSEs – CHAMP neutral mass density

Neutral mass density RMSE (over 320-450 km)

Global error reduction is achieved by assimilation of COSMIC data by coupled thermosphere-ionosphere data assimilation

OSSEs – COSMIC electron density

Control

Global error reduction is achieved by assimilation of COSMIC data by coupled thermosphere-ionosphere data assimilation

OSSEs – COSMIC electron density

Latitude

[Kg/m³]

Strongly coupled data assimilation can extend predictability of the thermosphere more than 72 hours

Ensemble forecast initialized by COSMIC assimilation

NCAR TIEGCM

COSMIC Electron Density Profile

CHAMP Mass Density

Mass density can be estimated from COSMIC electron density via coupled thermosphere-ionosphere data assimilation

Comparison to 2-day (30 orbits) of CHAMP density observations

- 1 Strongly coupled thermosphere-ionosphere data assimilation approaches work better than weakly coupled approaches for both ionosphere and thermosphere specification and forecasting.
- 2 Large amount of indirect measurements (e.g. from GPS) are more effective than small amount of direct measurements (e.g. from accelerometers) for global neutral mass density specification and forecasting.
- 3 Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps to reduce unrealistic model error growth due to unbalanced increment than slow cycling (e.g. ~1 hour).

Rapid cycling helps reduce unrealistic model error growth

[Chen et al., JGR, 2016]

- 1 **Strongly coupled** thermosphere-ionosphere data assimilation approaches work better than **weakly coupled** approaches for both ionosphere and thermosphere specification and forecasting.
- 2 Large amount of indirect measurements (e.g. from GPS) are more effective than *small amount of direct measurements* (e.g. from accelerometers) for global neutral mass density specification and forecasting.
- 3 Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps to reduce unrealistic model error growth due to unbalanced increment than slow cycling (e.g. ~1 hour).
- 4 **State estimation** works better than **forcing parameter estimation**. Forcing parameter estimation is challenging if underlying dynamics that control forcing evolution are not included in the forecast model.

NCAR TIEGCM

CHAMP Mass Density

Image Courtesy: UCAR, GFDL & GFZ

Global error reduction achieved by forcing estimation Filter degeneracy issues. Parameter estimation works well when model errors originates only from parameter misspecification.

OSSEs – CHAMP neutral mass density

- 1 **Strongly coupled** thermosphere-ionosphere data assimilation approaches work better than **weakly coupled** approaches for both ionosphere and thermosphere specification and forecasting.
- 2 Large amount of indirect measurements (e.g. from GPS) are more effective than *small amount of direct measurements* (e.g. from accelerometers) for global neutral mass density specification and forecasting.
- 3 Rapid forecast-assimilation cycling (e.g. ~10 minutes) helps to reduce unrealistic model error growth due to unbalanced increment than slow cycling (e.g. ~1 hour).
- 4 **State estimation** works better than **forcing parameter estimation**. Forcing parameter estimation is challenging if underlying dynamics that control forcing evolution are not included in the forecast model.