Magnetosphere-Ionosphere-Thermosphere Coupling through Anomalous Ionospheric Conductivity

Yakov Dimant and Meers Oppenheim

Center for Space Physics Boston University, USA

dimant@bu.edu

2016 JOINT CEDAR-GEM WORKSHOP, SANTA FE, NM, 19-24 JUNE 2016

Magnetosphere-Ionosphere Coupling

Effects of small-scale E-region turbulence on large-scale ionospheric conductivities:

- Anomalous electron heating (AEH) → reduced recombination
 → increased plasma density
- Anomalous electron transport: nonlinear current (NC)

Anomalous electron heating

During magnetospheric storms/substorms, E-region turbulence at the high latitude electrojet heats up electrons dramatically.

This temperature elevation is induced mainly by turbulent electric fields. The small turbulent field component parallel to \mathbf{B}_0 plays a crucial role.

Anomalous Pedersen Conductivity

Dimant and Oppenheim, JGR (2011)

0: Undisturbed ("normal") conductivity

1: Anomalous conductivity with nonlinear current (NC)

2: Anomalous conductivity with NC + AEH effect

Anomalous Conductance Multipliers

Convection electric field, mV/m