U.S.NAVAL

ESEARC
LABORATORY

Seasonal Dependence of High Latitude Upper

Thermospheric Winds:

A Climatological Study Based on Ground and Space Based Instruments

Manbharat S. Dhadly!

! National Research Council Postdoctoral Fellow
Space Science Division, Naval Research Laboratory, Washington DC, USA

John T. Emmert2, and Douglas P. Drob?

2 Space Science Division, Naval Research Laboratory, Washington DC, USA

U.S. Naval Research Laboratory




U.S.NAVAL Motivation
ESEARC

LABORATORY

To understand how the quiet-time northern high latitude upper thermospheric (F-region, 200-300
Km) wind circulation respond in magnitude and shape to the changes in seasons.

Previous seasonal climatological studies (e.g. Killeen et al., [1995], Aruliah et al. [1996], Fejer et al.
[2002], Emmert et al. [2006a], Emmert et al. [2006b), etc.) have focused on either:
= nighttime climatology or data from individual instruments or limited spatial coverage.

Ionospheric plasma motions are naturally organized by the geomagnetic field and ion drag is one of
the primary drivers of neutral winds at high latitudes; this leads to better organization of neutral
winds in geomagnetic coordinates than in geographic coordinates.

Over the past decade or so, thermospheric wind empirical databases have grown in size fo allow
accurate representation of both dayside and nightside geomagnetically quiet (Kp<3) northern high
latitude horizontal wind patterns as a function of season, latitude, and local time in magnetic
coordinates.

In this study, we combined almost all the wind data available (ground-based and space-based optical
remote sensing, and in situ measurements) from northern mid to high latitudes to empirically model
winds in magnetic coordinates.

This is the first comprehensive study of high latitude winds by data assimilation in magnetic
coordinates.
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Neutral Wind Data Sets Used
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Figure 1: Time distribution of all the empirical data available
from 12 instruments. Note that there is a significant overlap
between the observations from various instruments.

9 Ground based FPI’s and 3 Space based instruments
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Ground Based Magnetic Years of Days Data
station Latitude Data Points
Thule FPI 84.6 N 1987 57 4949
Resolute Bay 83.4N 2004-2007 216 8176
FPI
Sgndre 73.3N 1983-1984 | 566 26708
Strgmfjord FPI 87-95, 02-
04
Toolik Field SDI 68.3 N 2012-2014 | 198 123801
Poker Flat SDI 65.2 N 2010-2012 303 114933
Millstone Hill 53.1N 1990-2002 | 533 13267
FPI
Millstone High 53.1N 2010-2015 229 11564
Res FPI
Peach 52.1N 2012-2015 | 507 32968
Mountain FPI
Urbana FPI 51.1N 2007-2008 | 648 53621
2012-2015

Space Based Yearsof | Days Data Data points

Instrument Data Points MLAT > 45
DE2 WATS 1981-83 100 16823 4781
GOCE 2009-12 574 211351 51203
WINDII 557.7 1991-96 348 75835 15465
nm
WINDII Red 1991-96 118 31051 2053
Line




Seasonal Data Distribution (1980-2015)
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Figure 2: Seasonal distribution of all the data sets used as function of magnetic
latitude and local time.
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® We used Vector Spherical Harmonic (VSH) functions [Swarztrauber, 1993] to model
winds as a function of latitude and local time in magnetic coordinates.

® Quasi-Dipole (QD) coordinates from Richmond [1995] were used for the magnetic
coordinate system.

® The choice of magnetic coordinates is based on the fact that the high latitude upper
thermospheric winds are strongly organized in magnetic coordinates.

® Model wind fits were produced at a resolution of degree 18 in magnetic latitude and
order 10 in magnetic local time.

® This latitude and local time resolution is sufficient fo represent the structural and
dynamic features of high latitude neutral convection (such as strong latitudinal
gradients in zonal winds that exist at the equatorward edge of the high latitude
circulation and antisunward cross-polar jets in the polar cap) without any obvious
spurious variations where data coverage is limited.
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Figure 5: Artistic representation of a binplot and model cut. A model cut is a plot showing time averaged
wind as a function of latitude. A binplot is a plot showing latitudinal averaged wind as a function of local
time. 6
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Figure 6: Average magnetic zonal winds computed from ground-based FPI's, WINDII, and DE2 WATS data as a function of magnetic
latitude. The black curve shows corresponding results from climatological data assimilation. Error bars denote the estimated uncertainty
of the mean. The wind components are in magnetic coordinates, except for WATS zonal winds, which are longitudinally averaged
geographic zonal winds. Data from various stations is labeled in colors and symbols (presented at the top left side of the figure).
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Figure 6: Average magnetic zonal winds computed from ground-based FPI's, WINDII, and DE2 WATS data as a function of magnetic
latitude. The black curve shows corresponding results from climatological data assimilation. Error bars denote the estimated uncertainty
of the mean. The wind components are in magnetic coordinates, except for WATS zonal winds, which are longitudinally averaged
geographic zonal winds. Data from various stations is labeled in colors and symbols (presented at the top left side of the figure).
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Zonal wind as a function of latitude (Geographic)
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Figure 6: Average GEOGRAPHIC zonal winds computed from ground-based FPI's, WINDII, and DE2 WATS data as a function of magnetic
latitude. The black curve shows corresponding results from climatological data assimilation. Error bars denote the estimated uncertainty
of the mean. Data from various stations is labeled in colors and symbols (presented at the top left side of the figure).
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Figure 7: Same as for Figure 6, but in this case the averages are plotted as a function of magnetic local
time.
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Figure 8: Same as for Figure 6, but in this case averages are computed as a function of local time.
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Figure 3: Quiet time average neutral vector winds as a function of magnetic
latitude and local time at northern high latitudes for winter, summer, and equinox
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seasons.




Model Results: Quiet time Seasonal Neutral
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Figure 10: Quiet time average neutral vector winds as a function of seasons, magnetic latitude, and
local time at northern high latitudes. The left panel shows equinox (red) and December solstice
(blue) winds. The right panel shows June solstice (blue) and December solstice (red) winds.
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Figure 11: Seasonal climatology of quiet time zonal (fop row) and meridional winds (bottom row), as a function

of local time and latitude in magnetic coordinates.
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Figure 12: Quiet time vertical component of vorticity of the modeled wind field as a function of local time and
latitude in magnetic coordinates.
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Heating due to cusp precipitation?
Signature of direct coupling between thermosphere and magnetosphere?

. _DATA: Mostly WINDII green line and GOCE .
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Figure 13: Quiet fime divergence of the modeled wind field as a function of local time and latitude in
magnetic coordinates. . 1
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® We have developed a climatological model that represents the seasonal behavior of quiet time high
latitude upper thermospheric neutral winds.

® This is the first comprehensive synthesis of the historical observational record into detailed, magnetically
organized high-latitude wind patterns.
=>  None of the empirical modeling studies (like HWM) have demonstrated such high latitude
wind features before. This is most probably due fo the use of geographic coordinates instead
of geomagnetic. We used magnetic coordinates that none of the empirical models have ever
used.

® We found no major discrepancies between data sets (except few isolated cases for WINDII RED LINE and
DE2 WATS that are still under investigation).

® Wind patterns indicate the strong influence of ionospheric convection, with a prominent anticyclonic cell on
the dusk side of the magnetic pole and a weaker tendency toward a cyclonic cell on the dawn side.

® There is a marked seasonal variation in the patterns.
=»  In winter time, the neutral wind circulation pattern is confined to only higher latitudes
(X70° magnetic latitude); it expands fo lower latitudes during summer tfime.

® The change in vorticity and divergence in upper thermospheric winds with seasons suggests the change in
their respective driver and coupling between ionosphere and thermosphere.

FUTURE STEPS:

1. Perform a similar study for southern hemisphere.
2. Ingest these studies info HWM to improve behavior of HWM winds at high latitudes.




