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Modern technological systems like GNSS positioning, HF communications, radar ranging,
satellite communications, and power distribution are all affected by space weather and can
become unreliable during disturbed conditions. For large space weather events the
thermosphere and ionosphere, driven by strong external forcing and under the influence of
feed-back loops, exhibit large deviations from climatology. Such extreme space weather
conditions can have high impacts on systems and are notoriously difficult to reproduce by
models. Successful specification and forecasting during such events requires physics based
ionosphere thermosphere models and Data Assimilation (DA) schemes. DA in the
thermosphere ionosphere system is required because of the impossibility to measure the
forcing of the system with the necessary spatial and temporal resolution. The Coupled
Thermosphere lonosphere Plasmasphere and Electrodynamics (CTIPe) model is currently
evaluated to determine the possibility of its use as the background model for the
development of a modular data assimilation system. In parallel, the uncertainty associated
with the external forcing of the system, i.e. high-latitude convection and precipitation
patterns, solar UV and EUV fluxes, and the waves propagating from below, and the
uncertainties associated with them are being evaluated to establish requirements for the DA
scheme.
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The Need for Data Assimilation

In addition to compensating for missing physics in the models, data assimilation schemes
have system dependent requirements:

Chaotic systems need DA because the initial conditions cannot be determined with
the necessary accuracy

Strongly forced systems need DA because the forcing cannot be accurately determined

The different needs result in different optimal assimilation schemes



More on Systems

No system is purely chaotic or purely forced
There is a mixture of behaviors in all systems
The dominant behavior dictates the optimal Data Assimilation scheme

Chaotic behavior dominates the global terrestrial weather system
(the external forcing is diurnally reproducible)

However, on a regional scale (hurricane) external forcing can become
important

Chaotic systems require better initial conditions
Strongly forced systems require better forcing as a function of time

A hybrid system requires both



Data Assimilation Issues/Questions

What Assimilation Scheme to use (enKF)?

What model (physics based, resolution, missing physics)?

What should be in the Kalman state?

How many measurements are necessary?

How good is the Error Covariance matrix (enough members in the enKF?)
State and Forcing not self-consistent; Consequences?

State elements not self-consistent; Consequences?



Running the DA scheme

Changing only the model results
Updating state not forcing
Updating forcing not state

Updating both forcing and state
Fitting structure in the model & data



Results

Experiment 41

i

\‘1

oYY A AN iy '51

M

Large Kalman state (500000 elements)
60 measurements every 10 minutes
20 members in the ensemble
= Not enough data!!
= Not enough members in the ensemble




The Future

e Data Assimilation

* GNSS ground and RO TEC

* Digisondes, dynasondes and radars

e COSMIC I, GOLD and ICON

e SWARM, ...

Not just for operations but for Research also!
Reanalysis!
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On Models and Data for Data Assimilation

Good models require fewer measurements for specification and forecast
Good, abundant measurements can work with less sophisticated models
A perfect model requires no measurements

Perfect measurements require no model

This is true for both chaotic and strongly forced systems

The characteristics of the system, together with the quality of model
and data dictate the choice of assimilation scheme!



Solar EUV Heating

We use a proxy (F10.7) for the solar flux.

F10.7 correlates well with the solar flux over long time scales but not
so well over short time scales.

The use of a proxy combined with uncertainties in heating
efficiencies combine to produce uncertainties of at least 50% in the
thermosphere heating.

Heat transport complicates the picture even more.

Important for global dynamics and electrodynamics



Particles and Fields

E-field patterns are statistical and consequently smooth

Conductivity calculations are based on statistical precipitation patterns
that are extrapolated from one orbit, in-situ, measurements or ACE data

=> Joule heating calculations based on statistical patterns have large
uncertainties:
50% globally

factor of ten locally

One cannot remove the uncertainty entirely

Important for global circulation, neutral composition, and electrodynamical
processes



Tides from below

Only propagating tides included in most models

No gravity waves included

Amplitudes and phases are uncertain by at least 50%
Very important for the D- and E-regions (80-150 km)

Important for the F-region (300-500 km) variability



Large Variability
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One or a few measurements are not enough to pinpoint the state of the system.
Need to interpret self-consistently many different measurements.

Fejer and Scherliess, 2001



A Modeling Problem

« Uncertainty in high-latitude convection and particle precipitation
produce large uncertainty in Joule heating

- Joule Heating affects the global neutral temperature structure,
circulation, and chemical composition (neutral system state)

 Neutral changes affect production, loss and transport of ionization
and have dramatic effects on global electron density and TEC
structures (ionosphere state)

* Global Joule heating cannot be satisfactory modeled at this time

=> We can model generic storms but not specific ones

Improve Joule Heating through data assimilation



Data Assimilation

Combine model and data based on their statistical errors

Challenges
Find the best model representation for state evolution in time
Obtain accurate statistical error estimations for model and data
Availability of quality data
- latency

- spatial coverage
- statistical errors



Data Assimilation Schemes

|deally, any measurement should improve the estimate of all state elements
The covariance matrix can captures these relationships

In some systems the covariance matrix is stationary, i.e. it does not depend
on the state of the system and can be determined a-priori

In strongly nonlinear, forced systems the covariance matrix is not stationary
and must be determined at each assimilation step

In Space Weather the systems are large and non-linear and calculating the
covariance matrix at each assimilation step is not practical.

Monte-Carlo methods have been successfully used in other fields to
estimate the covariance



A DA Example: Global TEC from GPS

System: lonosphere(-Thermosphere) is Nonlinear and Strongly Forced
Background Models: Empirical
Data: Abundant in places, scarce in others

Assimilation scheme: Gauss Markov Kalman Filter
Localized covariance
No forcing estimates

DLR http://swaciweb.dlr.de/data-and-products/public/tec/tec-global/?L=1
GAIM Schunk et al. 2004 doi:10.1029/2002RS002794

Physics based model without DA
CTIPe http://helios.swpc.noaa.gov/ctipe/index.html



http://swaciweb.dlr.de/data-and-products/public/tec/tec-global/?L=1
http://dx.doi.org/10.1029/2002RS002794
http://helios.swpc.noaa.gov/ctipe/index.html

TEC Comparison

CTIPe DLR GAIM

http://helios.swpc.noaa.gov/ctipe/teccomp.html



CTIPe

Results from Bill Frey
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Data Assimilation today

GAIM vs DLR Model Output

300000 T T T T | T T T T T T T 771 T,
. /
150 Best Fit . z , , 7 _
250000 |y =1.17x-2.27 // P -
| R=0.86 A |
200000 2 A
- /7 7 7
/ —
150000 - e y=Xx N
» 100 - —
£ 100000 g i ]
& @) i i
5 Ll
o 50000 ==
2 0
Z 10000 a B ]
50 H —
1000 _ , i
‘0
77 _
100 2 .
e i
V4 4 : 7
10
0 ; 1 1 1 1 1 1 I 1 1 1 1 |
0 50 100 150
1 GAIM TEC Units

Results from Bill Frey

To do better we need to estimate the forcing based on all available measurements



An Ensemble Kalman Filter for Neutral Composition

System: Thermosphere-(lonosphere) is Nonlinear and Strongly Forced
Truth state generated by a more sophisticated numerical model
Background Model: Physics based

Data: Measurements from two sun-synchronous satellites (20%)
10% error on the measurements

Assimilation scheme: Ensemble Kalman Filter
No forcing included in the state
Forcing inferred from the assimilated state



Ensemble Kalman Filter example for O/N2
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Data Assimilation and the future

Ensemble Kalman filters offer the best hope for data assimilation for large
strongly forced dynamical systems with non-stationary covariance

One can do a better modeling job without perfect knowledge of the forcing

Data assimilation in multiple model fields can result in much more accurate
forcing patterns than direct measurements can offer

One could infer forcing patterns using EOFs. Successive orders of EOFs can
be determined from different assimilated fields using better data and physical
understanding.

New missions SWARM, COSMIC Il, GOLD, ICON

In nonlinear strongly forced systems Data Assimilation should be primarily
about correcting the forcing and not about correcting the model results



Challenges

Run GCMs in semi-operational environment + data assimilation
Specify input variability and uncertainty

Coupling with the lower atmosphere

UV and EUV specification and effects

Convection E-fields and particle precipitation during extreme events
High-latitude forcing specification now from ACE

Solar wind structure influence on high-latitude forcing
Solar wind-magnetosphere-ionosphere coupling + data assimilation



Developing An Ensemble Kalman Filter for Data Assimilation in CTIPE

Abstract

See you at the poster!

We are developing an ensemble kalman filter to assimilate data into the Coupled Thermo-
sphere lonosphere Plasmasphere and Electrodynamics (CTIPE) model. The Ensemble Kalman
Filter (EnKF) approach is useful for approximating the non stationary covariance of the state,
especially in high dimensional state spaces like that of CTIPE. Challenges include creating a
representative distribution of the state uncertainty in the ensemble, limiting the computa-
tional complexity of the scheme, and managing the effects of measurement biases. Finally,
we present preliminary results in assimilating simulated measurements.

Introduction

Data assimilation is a process in which measurements are incorporated into the state of a
model to improve specification and forecasting. Our scheme implements an Ensemble
Kalman Filter (EnKF).

state: X, —> F(t) —> X,
® 2

How can we improve X, using the measurements ¥, ?
o X,

@ - e

Conceptually, a data assimilation (DA) scheme
combines the model forecast X, with measure-
ments /_ to estimate the state X, , with a smaller
uncertainty.

Here, we represent uncertainty roughly with
blur.

Many techniques for data assimilation exist.
Some techniques such as the extended Kalman
Filter or 4DVAR linearize the dynamics which may
be more epensive and underestimate the correla-
tions compared to the Ensemble Kalman Filter.

f

Stefan Codrescu
CU/CIRES Boulder
NOAA/NCEI Boulder
stefan.codrescu@noaa.gov

Mihail Codrescu
NOAA/SWPC Boulder

Mariangel Fedrizzi
CU/CIRES Boulder
SWPC/NOAA Boulder

wv
)
>
c
=
©
O

-The filter can cause the state to become inconsistent and cause model
instance to crash.

- Density data from CHAMP and GRACE are more sparse than our simulat-
ed data and appears to have bias with respect to each other. Assimilat-
ing real density makes the filter diverge.

- How many members required to accurately approximate the covariance?
- How do we scale to more measurements? The most expensive calcula-

tion is the pseudo-inverse required for the Kalman gain. Can we avoid
this by assimilating one measurement at a time?

Results

We show results from assimilating simulated neutral density measure-
ments from March 20, 2007 (quiet day near solar minimum). Neutral den-
sity measurements are simulated by sampling a run of CTIPE forced with
an artificial F10.7 value. Although the test is weak, it indicates that we are
on the right track.

The combination of Panel 1 highlight the strongly forced nature of the
system, the filter is able to reproduce the simulated measurements only
by modifying the forcing Panel 2 illustrates that fixing the state under a
certain forcing will maintain the trajectory. Panel 3 shows the behvavior
when both forcing and state are modified by the assimilation.

Architecture

CTIPE is a non-linear, coupled thermosphere-ionosphere-plasmasphere physically based
numerical code that includes a self-consistent electrodynamics scheme for the computation
of dynamo electric fields. The model consists of four distinct components which run concur-
rently and are fully coupled.

The assimilation scheme is written from scratch in C++11.The program manages the en-
semble, gathering measurements, and assimilation calculations. The Eigen library is used for
matrix computations. Additionally, the GNU Multi-precision Library is needed.
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o Performance of the filter depends critically on the covariance estimate
QO obtained from the ensemble. The goal is to distribute the ensemble over
£ the state space according to the error of the current state and the possi-

3 ble evolutions in time through state space.
o Note the difference in behavior be-
firn] state: X, H X tween a strongly forced system and a
chaotic system due to some forcing
. F).
Chaotic system: '

F(t) Chaotic systems are characterized by
a strong sensitivity to initial condition,
thus it makes sense to perturb the
initial condition across the ensemble

. to distribute members over the state
Strongly Forced: space.

F(t) CTIPE in contrast, has less dependen-
cy on the initial condition and more
dependency on the forcing applied.
We call this a strongly forced system.
To distribute the ensemble over the
state space, we perturb the forcing.

The forcing in the ensemble is perturbed ac- B, ~ N(0,10)
cording to independent draws from normal dis- By ~ N(0,15)
tributions described to the right. Vi ~ N(0,50)

These are values that seemed to have accept- N(O.5
able performance. Investigating optimal distri- Psw ~ N(0,5)
bution parameters is future work. Fio.7 ~ N(0,50)

Three modes sspesid

- Panel 1: only allowing 2]

forcing.
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- Panel 2: the filter is only
allowed to modify the
Kalman state elements.
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- Panel 3: both state and
forcing are modified by
the filter. 3
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