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The Aug 24, 2005 Geomagnetic Storm

MODEL-DATA Comparison on 2005 Aug 24
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The Coupling between M and I-T (CMIT)
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TIEGCM/CMIT Modeling Results

Observation versus Stand-alone LFM and TIEGCM
06:00 — 22:00 UT, Aug-24-2005
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TIEGCM underestimates thermospheric mass density along CHAMP orbits, especially at high
latitudes — not enough heating due to empirical specifications of geospace drivers

CMIT overestimates thermospheric mass density by approximately a factor of two at high
latitudes — too much heating due to the overestimated geospace drivers

What’s missing? — the feedback loop associated with ionospheric O* outflow



Implementing an O* Outflow Model in CMIT

A Causally-Driven, Empirical O* Outflow Model
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Improved Mass Density Modeling with O*

Effects of O+ ions on thermospheric mass density
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The Storm-Time SW-M-I-T Dynamics

MAGNETOSPHERE-IONOSPHERE
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Simulated Storm-Time O* Outflow properties

Average O+ flux distributions Hemispheric O+ Rate versus Kp
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JOULE HEATING FAC & POTENTIAL

NEUTRAL DENSITY

The Role of O*on High-latitude EM Energy
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* The simulated ionospheric potential is reduced
when O*ions are included in the simulation

* Theregion-2 currents are significantly
improved when O* outflow is included in the
coupled global simulation

* The improved current system affects the
distribution of Poynting flux especially in the
polar cap, resulting less Joule heating in the
polar cap region.
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