The Aug 24, 2005 Geomagnetic Storm

DRIVING CONDITIONS:

 Main phase: 09:00 – 12:00 Bz maximum -45 nT, By maximum -40 nT, kp ~ 9 Dst~ -180

Approaches of modeling

- Empirical models MSIS90, etc.
- Statistical methods based on data fitting – CHAMP, GRACE, etc.
- First-Principle methods based on global-scale magnetosphere-ionospherethermosphere models – OpenGGCM-CTIM, CMIT

Cornor et al., [2016]

The Aug 24, 2005 Geomagnetic Storm

The Coupling between M and I-T (CMIT)

TIEGCM/CMIT Modeling Results

- TIEGCM <u>underestimates</u> thermospheric mass density along CHAMP orbits, especially at high latitudes – not enough heating due to empirical specifications of geospace drivers
- CMIT <u>overestimates</u> thermospheric mass density by approximately a factor of two at high latitudes – too much heating due to the overestimated geospace drivers
- What's <u>missing</u>? the feedback loop associated with ionospheric O⁺ outflow

Implementing an O⁺ Outflow Model in CMIT

A Causally-Driven, Empirical O⁺ Outflow Model

Improved Mass Density Modeling with O⁺

Effects of O+ ions on thermospheric mass density

The Storm-Time SW-M-I-T Dynamics

Simulated Storm-Time O⁺ Outflow properties

The Role of O⁺ on High-latitude EM Energy

- The simulated ionospheric potential is reduced when O⁺ ions are included in the simulation
- The region-2 currents are significantly improved when O⁺ outflow is included in the coupled global simulation
- The improved current system affects the distribution of Poynting flux especially in the polar cap, resulting less Joule heating in the polar cap region.

