


Loss of ring current ion through charge exchange

Long-term ring current decay following a The probability of charge exchange with
magnetic storm is mainly due to charge neutral atoms from the exosphere depends
exchange collisions of ring current ions with strongly on the energy of the incident ion and
geocoronal neutral atoms forming energetic the charge exchange cross sections —

neutral atoms (ENAs) that leave the ring different ion species have different lifetimes in
current system on ballistic trajectories. the ring current.
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Geocoronal Hydrogen Models

Rairden et al. [1986] Bailey and Gruntman [2011]

,0,¢) =
@ Spherically symmetric isothermal Chamberlain [1963] na (r 2¢) !

model of the exospheric hydrogen density. NVar Y > (Appcos(me) + By sin(me)) Yy, (0)
@ Density distribution fitted to the DE1 observation =0m=0

where,
from 1981 to 1985. N(r)y=p- rk

Apn (1) = apy + by - T
By (1) = ey, + dipy - 7

HO(dgéeSd))[lgg‘l-] @ Based on LAD TWINS observation.
ny(r, 0, =
" 31 @ . byn, Ciym. di, p. K are tabulated for June 11,
NOVET 3 Y (Apncos(ms) + Binsin(me)) Yip (0 008. )
1=0m=0
@ Includes local time dependence.
@ Time dependence is implicit (Aj,, and By, derived Zoennchen et al. [2011]
for both equinox and solstice and 4 different F10.7). ny(r,0,¢) =
ol 2 1
NVar 35 3 (Apncos(me) + Bipsindmad)) Yim (0)
=0 m=0
TLO‘S(t;g‘Zaq’;? et al. [2003] @ Also based on LAD TWINS observation.
H\T, Y, =
@ All parameters are tabulated for 4 time periods
__r __r
) [n1(¢) erp ( aq (@) ) + n2(¢)exp ( ag (@) )] between June-September 2008.
v
@ Based on GEO IMAGE data. Valid past
R > 3.5Rpg.

@ risin Rg, ny, no, ay, ag are tabulated.

v
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Distribution of neutral H density in the

Rairden et al. [1986]

Hodges [1994]

equatorial plane

Ostgaard et al. [2003]

Bailey and Gruntman [2011]

log nH
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Vast differences in
magnitude and topology
between the neutral H
densities predicted by
different models (/lie et al.
[2013]).

Zoennchen et al. [2011]

log nH




Lifetimes of Ring Current lons

Rairden et al.[1986]

The ion lifetime is increasing with radial distance
(due to the exponential decrease in geocoronal
hydrogen density) and increasing with energy (more
energetic particles have lower cross sections).
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Lifetimes of Ring Current lons

The ion lifetime is increasing with radial distance
(due to the exponential decrease in geocoronal
hydrogen density) and increasing with energy (more
energetic particles have lower cross sections).

Both HT and O lifetimes are highly dependent on
the ny distribution in the near Earth region.
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Lifetimes of Ring Current lons

The ion lifetime is increasing with radial distance
(due to the exponential decrease in geocoronal
hydrogen density) and increasing with energy (more
energetic particles have lower cross sections).

Both HT and O lifetimes are highly dependent on
the ny distribution in the near Earth region.

For lower energy particles, different models of the
geocorona produce ion lifetimes that differ from each
other by up to a factor of 10 — the distribution of
the neutral hydrogen density alone is an important
factor in determining the decay time of the ring
current.
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Lifetimes of Ring Current lons

The ion lifetime is increasing with radial distance
(due to the exponential decrease in geocoronal
hydrogen density) and increasing with energy (more
energetic particles have lower cross sections).

Both HT and O lifetimes are highly dependent on
the ny distribution in the near Earth region.

For lower energy particles, different models of the
geocorona produce ion lifetimes that differ from each
other by up to a factor of 10 — the distribution of
the neutral hydrogen density alone is an important
factor in determining the decay time of the ring
current.

The ion lifetimes change with local time and pitch
angle as well (not show here).
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NS
Charge exchange decay rate of H" with energy

The decay rate <(%?) CE> = —ocgiy/ 2E<nH)Q is governed by
an interplay between the o¢g and ny.
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Charge exchange decay rate of H™ with energy

The decay rate <(%—,) > = —ocEgiy/ 2E<nH)Q is governed by '(:g"lhoighk:r“/e)riﬁl]{+

geocoronal hydrogen
distributions predict very
similar decay rates, while

an interplay between the ocg and ng.
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NS
Charge exchange decay rate of H" with energy

The decay rate <(%?) CE> = —0ocpiy/ 2E<nH)Q is governed by '(:grlhoighk:"‘f)'iﬁlHjL

geocoronal hydrogen
distributions predict very

R [ ] e similar decay rates, while
“F E 3 GRS E at lower energies they are
lmwt\ul 2011 mmﬂﬂ |‘

3 significantly different.
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! The decay rate shows
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NS
Charge exchange decay rate of H" with energy

The decay rate <(%?) CE> = —0ocpiy/ 2E<nH)Q is governed by '(:grlhoighk:"‘f)'iﬁlHjL

geocoronal hydrogen
distributions predict very

R [ ] e similar decay rates, while
“F E 3 GRS E at lower energies they are
O eanchen et a {3011 O mchen & a1{3611 N

3 significantly different.
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NS
Charge exchange decay rate of O with energy

The decay rate <(%) CE> = —ocgiy/ 2ﬁf(mq)Q is governed by
an interplay between the o¢g and ny.
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Little variation with energy
at all MLTs.

The decay rate is strongly
dependent on the local
time variations within each
of the geocoronal models.
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This suggests that
variations in the oxygen
decay rate (hence ENA
fluxes) are largely
governed by the
geocoronal hydrogen
rather than energy.
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NS
Charge exchange decay rate of H* with L-shell
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The decay rate <( 57

an interplay between the o¢g and ny.
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At a given energy the
decay rate as a function of
radial distance from the
Earth changes significantly
(up to ~ 75%) depending
on the geocoronal
hydrogen density model, at
both dawn and midnight.

The spread of decay rates
predicted by the
geocoronal models is
largest below 4 Re.
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Charge exchange decay rate of O with L-shell
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At a given energy the
decay rate as a function of
radial distance from the
Earth changes significantly
(up to ~ 75%) depending
on the geocoronal
hydrogen density model, at
both dawn and midnight.

The spread of decay rates
predicted by the
geocoronal models is
largest below 4 Re.
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HEIDI Hot lons Pressure

Rairden et al. [1986] Hodge_ls_[1 994] Ostgaard_gt al.[2003] Zoennchen etal. [2011] Bailey and Gantman [2011]
= = =

Raluca llie 10 / 11



Summary and Conclusions

Neutral hydrogen distribution controls the loss of H™ below 100 keV and
O™ for all energies.

The distribution of geocoronal H can alter the ring current topology and
increase its asymmetry.
Due to their symmetrical distributions and lower densities, it is possible that previous

models for H-density distribution used for ring current modeling led to an overestimation

of the total ring current energy.
v

Synthetic ENA images are very sensitive to the geocoronal H density
distribution and the location and intensity of the peak ENA enhancements
are controlled by the distribution of neutrals.
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