Multiple ISR observations of upper atmospheric long-term cooling

Shunrong Zhang MIT Haystack Observatory

ISR PIs Millstone Hill (P Erickson) Sondrestrom ISR (A. Stomme) Poker Flat /Chatnika ISR (M. Nicolls St Santin

Massachusetts institute of echnology

Method

- Getting data
- Binning according to h, LT, month
- Fitting / modeling

- Determining the trend
- Error estimate

 $T_{i} = P_{0} \text{ (background)}$ $+ P_{1} \text{ Year + (long-term trend)}$ $+ P_{2} f + P_{3} f^{2} + \text{(solar flux)}$ $+ P_{4} a \text{ (magnetic activity)}$ f = F107 - F107 a = ap3 - ap3

	Sondrestrom Trend residuals (a)	F10.7 residuals (b)	ap residuals (c)
£ 200 F	1.02K/year	1.74K/sfu	1.15K/ap
F200	500-550km	500-550km	500-550km
200	1Kyear	1.55K/sfu	1,89K/ap
-200	450-500km	450-500km	450-500km
200	2.34K/year	1.88K/sfu	2.32K/ap
-200	400-450km	400-450km	400-450km
£ 200	2.97K/year	2.17K/sfu	3.0116/ap
↓-200	350-400km	350-400km	350-400km
200	3.01K/year	2.32K/slu	3.68 К/ар
-200	300-350km	300-350km	300-350km
200	2.41K/year	2.22K/sfu	3.52 X7ap
-200 -	250-300km	250-300km	250-300km
¥ 200	0.671 K/year	1.88K/sfu	1.63K/ap
↓ -200	200-250km	200-250km	200-250km
200	0.18K/year	1.27K/stu	0.428K/ap
-200	180-200km	180-200km	180-200km
200	1.69K/year	1.02K/slu	1.59K/ap
-200	160-180km	160-180km	160-180km
¥ 200	1.8K/year	0.681K/stu	3.22Wap
-200 L	140-160km	140-160km	140-160km
200	0.215K/year	0.24K/sfu	1.88K/ap
-200	120-140km	120-140km	120-140km
200	-0.269K/year	0.0592K/stu	0.671K/ap
-200	100-120km	100-120km	100-120km
1	990 1995 2000 2005 2010 201 vear	15 75 100 125 150 175 200 225 F107 (sfu)	0 10 20 30 40 50 ap

Millstone Hill

- Increasing cooling with height
- Stronger
 daytime cooling

Sondrestrom

Sondrestrom

Dayside, with Bz > and Bz <0

Daytime Comparison 🗕 PFL 🗕 StT 500 450 400 Altitude (km) 220 220

Ti, Te, and Tn

Ti dependency on Tn, [O], Ne, and Te

Gravity waves trends?

(a) the climate regime shift of 1976–1977 launched slow Rossby waves across the oceans which continue to propagate to this day,
(b) winds over this increasingly corrugated ocean have

launched increasing fluxes of gravity waves into the atmosphere,

(c) these increasing fluxes of gravity waves have propagated to the thermosphere to produce increasing amounts of cooling

Oliver, W. L., S.-R. Zhang,, and L. P. Goncharenko (2013), Is thermospheric global cooling caused by gravity waves, J. Geophys., Res., 118, 1–11, doi:10.1002/jgra.50370.

Summary

- Similarities exist between Ti trends derived from MH, Sondrestrome and Poker Flat / Chatanika
 - Height dependency
 - Day-night difference
 - Strong cooling: ~90K (daytime average) in 45 years; or 45K (day+night)

Questions:

- Stronger cooling than expected (from CO2 effect)
- Day-night difference