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Nonlinear Wave-Wave Interactions
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Theory of Nonlinear Interactions (Teitelbaum, 1991)
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Previous Work on Nonlinear AZD,

Interactions
Ground-Based Studies Satellite-Based Studies Modeling-Based Studies
* Numerous studies * Recent evidence of * Modeling studies using
showing evidence of secondary waves on a general circulation
primary wave and global scale models (GCMs) support
secondary wave that secondary waves
periodicities at the can be generated in the

same location atmosphere

Limitations Limitations

o _ Limitations
* Ground- ase studies . .Certam wave-wave * GCMs are complex
~ cannot provide global interactions are difficult e | ack of observational

/ ~_information to observe (QTDW- basis

DW?21) due to aliasing



Science Questions

It \S/\R/e,lrea::j tgﬁ_gi;vnosphere IS Impacts on MLT Region and Above
interacting to force ¢
secondary waves and
where do significant ;:Og:s;ywave
secondary wave responses (2d§yE2’ 16-hrWa)
occur? o
g N
2. How does the nonlinear =
forcing region affect the < Nonlinear
structure and propagation Forcing Region
of the resulting secondary <
waves?

I Methodology

| Estimate the primary waves and secondary Migrating Diurnal Quasi two-day

Tide (DW1) wave (QTDW)

f | waves from satellite observations (EOS Aura-
MLS and TIMED-SABER)
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Secondary Wave from SABER

Secondary Wave Response

Primary Waves Secondary Waves
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* FFSM (Salby, 1982) method completely separates
the QTDW and 2-dayE2 from each other

* 2-dayE2 signal represents 2-dayE2/16hrW4
secondary wave activity
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QTDW Temperatures, Winds

QTDW Temperature from Salby Method Derived QTDW Winds

2-dayW3 Temperature Amp. [K] 1/21/2011 2-dayW3 Zonal Wind Amplitude [m/s], 1/ 21/ 2011
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2-dayW3 Meridional Wind Amplitude [m/s], 1/21/2011

Compute QTDW u’and v’ using

momentum balance
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DW1 Temperature, Winds

Short-term temperature estimates of DW1 from combined MLS/SABER data
(Nguyen and Palo, 2013)

DWI1 Temperature Amp. [K], 1/21/ 2011 DW1 Temperature Phase [hr], 1/21/2011

*No estimates available above 8o
km due to large MLS/SABER bias
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Fit to Global Scale Wave Model (GSWM) Hough Mode Extensions to derive
horizontal winds

DW1 HME T Amp. [K], 1/21/2011 DW1 HME Zonal Wind Amp. [m/s], 1/ 21/ 2011 DW1 HME Merdional Wind Amp. [m/s], 1/21/2011
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Nonlinear Forcing Term

Dynamics of the atmosphere are governed by conservation of
momentum, energy, mass and ideal gas law

Conservation of momentum (zonal, meridional) and enerqy

ou u 0 v o 0
af f a9\ o at 9. = Fi or,T F'ress rad,x Fricz Fo er,T
8t+tacos<b6)\+a8q5+w8z + Corz + L' Pressgrad,z + L' fric,s + Lother,

ov u 0
5 + (LCOS¢ 8—)\ + E % + w& + a + — FCor,y + FPresngad,y + Ffric,y + Fothe'r,y

Dependent Field Variables

u=zonal wind vel. w=vertical wind vel.
Advection v=meridional wind vel. T=Temperature

Assume u, v, w, T are composed of 2 primary waves

Products of Zonal momentum forcing
| primary waves

| through
nonlinear terms

Meridional momentum forcing

Thermal forcing

8
J,s y




Thermal Forcing of Secondary Waves

2dayE2 Thermal forcing Amp. [1E-5 K/s] 1/21/ 2011 2dayE2 Thermal forcing Phase [hr] 1/21/2011
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Conclusions/Future

Summary

* Investigates the forcing and
manifestation of secondary waves
arising from DW1-QTDW
interaction from satellite
observations

Future

* Global Scale Wave Model
(GSWM) will be utilized to
investigate the relationship
between nonlinear forcing region
and the secondary wave response

* Determine potential impact on the
MLT and IT systems
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GSWM Secondary Wave Response

2dayE2 GSWM Zonal Wind Amp. [m/s]
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