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Implementation of Spectral Gravity Wavefield to the
Global lonosphere Thermosphere Model (GITM)
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Model Highlights
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* Spectral Gravity Wavefield
v' Fourier gravity wave ray tracing

v' Stochastic background perturbation fields (O-
180 km) for temperature, pressure, density,
and three wind components frobetal, 2013)

*Global Ionosphere Thermosphere Model
(CITM)

v' non-hydrostatic solutions
‘/ fIQXibIe 3D PZSOIUTion [Ridley et al., 2006]



Implementation of Gravity Wavefields |
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« Spectral model (0-180 km) v.s. GITM (100-650 km)
« Horizontal grid size: 0.08°x0.08°

* Vertical grid size: 0.15 of the scale height, <1 km at the lower
thermosphere

* Time-varying Gravity wavefields of u (+40 m/s), v (x40 m/s), and
w (10 m/s) are implemented separately at the lower boundary
layers below 100 km.




Results Thermospheric & lonospheric Response
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Results Thermospheric & lonospheric Response

Rho, [e-], & TEC
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Results Model Comparison

Energy Dissipation & Wave Damping (?)

V=
1

* Multi-species diffusive separation 41N Cut, 100km X, 100km, t = t, + 60min

« Power spectra: The difference
between two fields at 100 km is small.
Waves appear to be subject to lower 0.000 0.004 0.008 0.00 0.03 0.06
damping propagating in the spectral
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model (black curves). The difference 5 10 10

between two models are estimated at £ - 5

the bottom of both figures as 2 o N
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* Damping is parameterized as a 2 2

complex vertical wavenumber with
m; = —vm3/&

« Weaker damping may be partially
owing to the fact that ion-drag
damping is ignored to the first order
and nonlinear wave-wave interaction
and radiative damping are not yet
included in the spectral model.
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Summary, Conclusions, & Future Work
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« The background sub-grid gravity waves are incorporated into wavefields and
implemented at the lower boundary of GITM.

* Horizontal wind components result in changes of neutral density within 8% and
electron density within 2%. Variation caused by vertical wind perturbation is about
3-6 times higher than by the horizontal wind.

« TIDs appear to be formed with the background wavefields.

« The comparison of wave propagation in the two models shows weaker damping in
the spectral model. TIon-drag, non-linear wave-wave interaction, radiative
damping...?

* Our future work is to further increase the vertical resolution in GITM and to
investigate and explain the observed differences regarding to moment flux and
energy dissipation.

* Poster: COUP-05 (MLT), Tuesday 4-7 PM, Jun 23 (yesterday, so please come talk
to mel)



References ,!
JEE

S
Y &
-
 [1] Deng, Y. and A. J. Ridley (2014), Simulation of non-hydrostatic gravity

wave propagation in the upper thermosphere, Ann. Geophys., 32, 443-
447, doi:10.5194/angeo-32-443-2014

* [2] Drob, D. P. et al. (2013), Method for specifying GW for infrasound
propagation, J. of Geophys. Res., 118, 3933-3944, doi:
d0i:10.1029/2012JD018077

« [3] Hedlin M. A. H. and D. Drob (2014), Statistical characterization of
atmospheric gravity waves by seismoacoustic observations, J. Geophys.
Res. Atmos., 119, 5345-5363, doi:10.1002/2013JD021304




Thanks!




