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Super Dual Auroral Radar Network

« SuperDARN consists of over 30 HF
radars operated continuously by
institutions in 10 countries

« About 1.5 solar cycles of data
are currently available

» Operates between 8-22 MHz

|dentifies field-aligned
irregularities with
wavelengths between about
10-100 m

» Designed to observe F-region
ionospheric scatter from the
front (red) field-of-view
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SuperDARN over a Solar Cycle

* The Heppner-
Maynard Boundary
(HMB) encircles the
region of
ionospheric
convection at its

lowest latitude
HMB latitude
decreases during
the declining BRI Hiran :
phase of the solar e
cycle (2003) and ———— gprrmy YW Uy
peaks during
solar minimum
(2009)

* Convection pattern
morphology can be
quantified using '
Spherical Harmonic
Functions
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SuperDARN over a Solar Cycle
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« Relative occurrence of ground and
ionospheric backscatter shows seasonal

ol and solar cycle variations

« Virtual height and density of ground
backscatter shows the polar variations in

D O , i | the bottomside ionosphere
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Long-term Trend Question

« How do the influences of magnetosphere-ionosphere coupling,
ionosphere-thermosphere coupling, and solar irradiance change in
importance over the solar cycle, when considering the behaviour

of the polar ionosphere?

Hovlv c?io the polar convection patterns vary over the solar
cycle?
» Clearly their latitudinal extent changes, influenced by the presence
of substorms and solar irradiance
e Morphology patterns change with IMF orientation, season; perhaps
solar cycle as well?
How does the bottomside ionosphere vary?

What does the solar cycle climatology of ionospheric
irregularities look like?

« Do larger scale ionospheric irregularities show the same type of
trends as GPS scintillation?

» Are these variations related to the polar cap convection patterns?



