Localized polar cap flow enhancement tracing and evolution using airglow patches

Ying Zou(UCLA); Yukitoshi Nishimura; Larry R. Lyons; Kazuo Shiokawa, Eric F. Donovan; John Michael Ruohoniemi; Kathryn A. McWilliams; Nozomu Nishitani

How common is the association?

Motivation: Determine statistically whether airglow patches can be used to study the 2-D evolution of localized flow enhancements over polar cap and examine the flow properties.

Flow structures associated with airglow patches

Fast, longitudinally narrow flow enhancement collocated with airglow patch for >10 min (16 min in this case).

- Flow width ~ Patch width
- Flow direction // Patch motion direction
- Flow speed: 600-700 m/s, comparable to patch speed
 - Patch speed: straight line distance/time: 500 m/s

actual speed: >500 m/s due to curved trajectory (blue arrows)

Localized polar cap flow enhancements are associated with airglow patches. The association is steady during their propagation.

Airglow as optical tracer of localized flow enhancements

- 1. As localized flow enhancements propagated across the polar cap, their velocity and direction can vary significantly over time.
- 2. The time-dependent flow evolution coincides with, thus is well reflected by airglow propagation.

Airglow can be used as the optical tracer of localized flow enhancements.

Statistics: association rate and flow speed

Database:

propagating patches with good radar coverage

Localized flow enhancement criterion: >~200 m/s difference >=10 min Jan-Mar & Oct-Dec of 2008-2012: 93 patches

67% associated localized flow enhancements: common association

Flow speed on patches is statistically larger when airglow patches are associated with localized flow structures than not. Flow enhancement duration vs patch duration

IMF dependence of localized flow enhancements

Median IMF clock angles for localized flow enhancements

- 1. Patches with/without flow structures show different IMF dependence *Associated: most likely By-dominated Unassociated: mostly under –Bz dominated IMF with small –By*
- 2. The overall clock angle similar to PMAFs.
 - \rightarrow PMAFs likely to be the source of patches and associated flows.

Potential across localized flow enhancements

- Flow potential: product of magnetic field, flow speed and flow width, the magnetic field being derived from a dipole field at pole.
- Polar cap potential: SuperDARN convection maps

	Фрс	Flow	Flow	Flow	%
		speed	width	potential	
2011-12-01/10:54-11:08	48	600	200	6.6	14
2009-02-23/7:44-7:53	45	900	200	9.9	22
2011-03-04/4:55-5:08	53	700	100	3.85	7
2011-11-05/8:20-9:02	48	600	300	9.9	21
2011-11-27/6:20-7:11	53	500	300	8.25	16
2012-02-25/5:47-6:27	49	500	600	16.5	34
2012-11-18/7:16-7:50	46	800	400	17.6	38
2010-03-05/7:06	41	800	300	13.2	32

