

GPS scintillation and irregularities at the front of a tongue of ionization in the nightside polar ionosphere over Svalbard

Christer van der Meeren¹, Kjellmar Oksavik^{1,2}, Dag Lorentzen^{2,3}, Jøran Moen^{4,2}, Vincenzo Romano⁵

¹ Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Norway.

² University Centre in Svalbard, Longyearbyen, Norway.

² Birkeland Centre for Space Science, University Centre in Svalbard, Longyearbyen, Norway.

⁴ Department of Physics, University of Oslo, Norway

⁵ Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

Motivation

- Scintillations in polar cap well correlated with patch activity
- What about continuous TOIs?

[Gondarenko and Guzdar, 2004]

Background

- Plasma irregularities of scale sizes 10m–1km cause scintillations on GPS signals
- Amplitude scintillations: 10–100m-scale irregularities, S₄ index

$$S_4^2 = \frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}$$
, $I = \text{power}$

• Phase scintillations: 100m–1km-scale irregularities, usually σ_{ϕ} index

 $\sigma_{\phi}^2 = \langle \phi^2 \rangle - \langle \phi \rangle^2$, ϕ = detrended phase

Methodology

- Case study of scintillation on the leading edge of a TOI over Svalbard on 31 Oct 2011
- 3 GPS receivers (NovAtel GSV4004B GISTM) (2 in NYA, 1 in LYR)
- EISCAT Svalbard Radar
- 630.0nm ASI at NYA
- SuperDARN Hankasalmi radar

TOI across polar cap

TOI across polar cap

TOI airglow over Svalbard

Geomagnetic overview

GPS IPP locations

Discussion – the problems of σ_{ϕ}

[Forte and Radicella, 2002; Béniguel et al., 2004; Forte, 2005; Beach, 2006; Mushini et al., 2012]

- Phase scintillation does not necessarily imply irregularities
- May instead be «false» scintillations from the gradient itself
- 1. Poor data detrending
 - σ_{ϕ} index sensitive to low-frequency phase variations
 - Gradient = low-frequency phase variation
 - 0.1 Hz too low at high latitudes (gradients correspond to phase variations > 0.1 Hz)
- 2. No scintillation after the gradient
 - · Gradient drift instability (GDI) stable on leading edges
 - Irregularities would most likely develop from inside the structure toward the front
 - Uncertain vorticities, rotations making the front unstable to the GDI

Conclusion

- Case study of GPS scintillation at TOI front on 31 October 2011
- Notable phase scintillation at the leading gradient, no significant amplitude scintillation
- Increases in the σ_{ϕ} index are most likely due to TEC gradient and poor data detrending
- No evidence in favour of structuring (significant enough to cause GPS scintillation) on the TOI front, or inside the high-density region immediately behind the gradient