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From research to pedagogy to research

Armed with a physical model, a distributed network of measurements, and the 
mathematics of inverse theory, the ionosphere-thermosphere system itself 
becomes a remote sensing diagnostic, providing information about processes 
above and below that cannot be obtained by any other means.
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Observational science: inverse theoretic view

SEMETER : MODEL-BASED INVERSION OF AURORAL PROCESSES X - 3

The image we sense can be considered as a blurred representation of reality. We could

represent this mathematically as a Fredholm integral equation of the first kind

g(s) =

Z
k(s, t)f(t)dt, (1)

Solving this equation might produce for us a more correct representation of reality, but

ultimately even our deconvolved image represents a perspective projection of reality. To

understand the measured dynamic in physical coordinates, rather than image coordinates,

we could deconvolve this movie at multiple positions around the object, and performa

tomographic inversion

p✓(u) =

Z 1

�1
f(u cos ✓ � v sin ✓, u sin ✓ + v cos ✓)dv (2)

where the above equation gives the 1-D projection at angle ✓ of a 2-D slice through the

field, denoted by f(x, y). If the measurements are su�ciently complete, we could apply

the projection slice theorem to recover f(x, y).

One problem is that from the projections alone, we could never reconstruct the

actual physics of what produced this image unless we start with some prior physical

information. For instance, I could tell you that we have a wheel of radius r connected to

a handle of length l, with lights distributed, and n lights distributed uniformly around

the circumference. From that limited information, you might be able to construct a

parameter estimation problem that could recover the physics. Such problems are usually

treated using optimization of a cost function.

b
h = argmin

h
||L{h}� g||2P + ||↵K{f}||2Q (3)

Our bias can be quantified in terms of mathematical operators

y(q) = L{x(p)} (4)
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The ionosphere as Earth system sensor

100

110

120 

Semeter, J., T. Butler, C. Heinselman, M. Nicolls, J. Kelly, and D. 
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results from PFISR, J. Atmos. Sol. Terr. Phys., 71, 738–743. doi:
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Song, Y. T., et al (2007), Detecting tsunami genesis and 
scales directly from coastal GPS stations, Geophys. Res. 
Lett., 34, L19,602, 10.1029/2007GL031681.

Space-time variations in the ionospheric density field provide a projection of 
dynamics drivers above (left, magnetospheric substorm) and below (right, Tohoku 
earthquake).
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Space weather monitoring using GNSS signals

INSPIRE 
AGS 

Pankratius, Lind, Coster, Erickson, 
Semeter, AGU 2013,  
Abstract 1802711, Session SA31B 
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Importance of Space Weather Monitoring 

• Affects performance and reliability of critical applications 
 

• Our goal: Leverage entire ionosphere as a sensor for 

• Space-based phenomena  (e.g., Solar wind) 

• Earth-based phenomena  (e.g,. Earthquakes, Tsunamis; Song et al. 
    2007; Galvan et al. 2011; Komjathy et al. 2013) 

Storm Enhanced 
Density feature 

Tohoku-Oki Earthquake 
and Tsunami 

Feb 12, 2013 North 
Korea  Nuclear Test  

(Komjathy, Yang, Butala, Ijima, Mannucci. Beacon Satellite Symp. 2013) 

Texas Fertilizer Plant 
Explosion Apr 18 

(Rideout & Coster 2006) (NASA JPL Photojournal 
PIA14430/Caltech, 2012) 

Chelyabinsk Meteor 
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Problem:  Sensor sparsity
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Problem: Sensor Sparsity 

(Source: Anthea Coster,  MIT Haystack) 
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Solution:  Technology trends
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Filling the Gap: Technology Trends 

[1 GFLOP = 109 floating point ops] 

Top500 Supercomputers, 1993 
CM-5 Los Alamos 
• 1024 processors 
• 59.7 GFLOPS 
 

http://www.top500.org/timeline/ 

2013 

iPhone 5S (A7 64 Bit) 
76.8 GFLOPS (GPU@300MHz) 

iPad3 
38.4 GFLOPS (GPU@300MHz) 

[Source: AnandTech.com] 

2 - 16 Cores 

48 Cores 192 Cores 
(Networking) 

Thousands 
of Cores 
(GPUs) 

4 CPU +  
16 GPU 
(Ivy Bridge)  

60 Cores 

General-Purpose Special-Purpose Hybrids 

2 CPU +  
4 GPU 
(ARM A6X)  

Clock Rates [GHz] 

CPUs GPUs 

Energy- 
Saving 

DSP 

Processor Trends 

Jeffers & Reinders, 2013 
Mobile Processors 
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Filling the Gap: Technology Trends 
Mobile Devices 
• Parallel computers 
• Network connections (cell, WiFi, Bluetooth, USB)  
Æ “Last  Mile  Data  Transmission  Problem” 

• Local storage (GB)  
Æ asynchronous data collection; GPS is time-tagged 

• Low cost; software productivity; COTS hardware 
• Extensibility (sensors, hardware, software) 

• Adaptable intelligent behavior (e.g., profiles for battery / power, network type, etc.) 

• Ubiquity: CEO Ericsson: ~6.4 billion devices in 2013, ~9.3 billion in 2018 

Source: Wikimedia Commons; World Bank, Miniwatts Marketing Group Rural Gambia; Source: Wikipedia 
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GPS Dual-
Frequency 
Receiver Gateway 

GPS Dual-
Frequency 
Receiver Gateway 

WiFi 
Cell 
Phone 
Network 

GPS L1, 
L2 GPS L1, 

L2 

Æ Relays  
(Mobile Devices) 

Relays  
(Mobile Devices) 

Computational 
Reconstruction Cloud 

Mahali: Space Weather Monitoring Everywhere 
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Conclusions
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Conclusions 
• Mobile technology is a game changer for observatories 

• Range, variety of networks for data transport 
• Pervasive use 
• Processing power: Local parallel computing on multicore 

processors, cloud connectivity for more complex tasks 
• Local storage 
• Expecting dual-frequency GPS in every device  

(e.g., for precise navigation) 
• Synchronous & asynchronous data processing 

 

• Long-term goal: Leverage entire ionosphere as sensor for 
ground-based and space-based phenomena 
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