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Mapping ionospheric electrodynamics with
AMPERE and SuperDARN data
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Challenges
» Uncertainty quantification
» Specifying conductance
» Validation of results

sun fearths connections




CEDAR 2014, Hi-Lat Data Assim

Mapping Procedure

= Assimilative technique with Empirical Orthogonal Function (EOF) —
based error covariance

= Traditionally solved in terms of electrostatic potential,
can also be solved in terms of magnetic vector potential
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Evaluating Conductance Models

" Want quantitative metric for selecting ‘best’ conductance model =~ Neon _ solar
= Evaluate by using mapping procedure with just one data - .
type, predict observations of other type
= e.g., fit electrostatic potential with SuperDARN data,
predict AMPERE observations (using assumed
conductance),
= Compare predictions with actual observations
= Pick conductance model that minimizes discrepancy

between E obs & AB obs

Best results: diffuse aurora from Ovation Prime or SM
[Newell et al., 2010; Mitchell et al., 2013], w/ night-side 2,=45S

Night-side

O-P | FACadj| >2,0-P| >4,0-P| >4,0-SM| >4, no aur | >6, O-P
AB > E:  \Med |err| [m/s] 523 513 172 147 146 147 142
E= AB:  Med |err| [nT]| 33.2 33.3 33.5| 347 34.6 34.7| 36.7
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Assimilative Mapping Example

= Solving with both data sets together

= Electrostatic potential map based on solving in terms of
electrostatic potential (more weight for SuperDARN data)

= Field-aligned current map based on solving in terms of magnetic
vector potential (more weight for AMPERE data)

30/Nov/2011 12:10-12:20 UT
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Assimilative Mapping Example

= Solving with both data sets together

= Electrostatic potential map based on solving in terms of
electrostatic potential (more weight for SuperDARN data)

= Field-aligned current map based on solving in terms of magnetic

vector potential (more weight for AMPERE data)

30/Nov/2011 12:10-12:20 UT

J) from @,2
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Assimilative Mapping — Benefits of using data sets together

= Analysis error decreases  ® AMPERE fills in SuperDARN  *® Electric potential & FAC

by 10% for ®, 40% for A coverage gaps & vice versa ~ Maps more compatible?
= feature correspondence

Independent

Together
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Summary of SuperDARN-AMPERE Mapping

=" Mapping ionospheric electrodynamics using optimal interpolation
data assimilation method with SuperDARN & AMPERE data
= Solving for both electrostatic potential & magnetic vector potential
= Using magnetic potential improves specification of FACs

Challenges
» Uncertainty quantification
* EOF analysis of model errors
» Sub-resolution variance of obs. (but what about biases?)

» Specifying conductance
* Empirical models & obs.-based adjustments tested quantitatively
* Best results w/ Ovation Prime (or SM) diffuse aurora & night-side 2, =4S
* But even ‘best’ model is not representative of instantaneous reality...

» Validation of results
* Improvement in qualitative appearance
e Quantitative reduction in analysis error
* Other approaches to validation?

We thank the AMPERE team and the AMPERE Science Data Center for providing the Iridium-derived data products.
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SuperDARN data

= 19 radars in the Northern Hemisphere,
~50° and poleward
= ‘Grid’ level data

= Spatial resolution: 110 km
= Temporal resolution: 2 min

= Line-of-sight (LOS) observations of
ExB plasma drifts at ~¥300 km altitude

November 01, 2011
04:42:00 - 04:52:00 UT

12MLT




Active
Magnetosphere and

Planetary

Electrodynamics

Response
“iiridium @ﬂﬂf]ﬂﬂ Experiment

Iridium for Science

* Magnetometer on AMPERE: Standard AMPERE: High
every satellite ~1° |at. res. ~ 0.1° lat. res.
* 6 orbit planes } 5 TR 3

(12 cuts in local time)
~11 satellites/plane

* 9 minute spacing -
re-sampling cadence

« 780 km altitude,
circular, polar orbits

[Brian Anderson]
CEDAR 2014, Hi-Lat Data Assim
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AMPERE Data: 26 Nov — 2 Dec, 2011

Counts Med |AB| (nT) Med Err (nT)
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AMPERE Data: 26 Nov — 2 Dec, 2011

Counts Med |AB| (nT) Med Err (nT)
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Assimilative Mapping Procedure

= Use the optimal interpolation (Ol) method of data assimilation
= Optimally combine information from observations and a
background model, taking into account error properties of both

= Background model:
= Electrostatic potential: SuperDARN CS10 empirical convection model

= Magnetic vector potential: AMPERE mean

= Error properties of background models estimated using Empirical
Orthogonal Function (EOF) analysis

» Observational errors based on local small-scale variance values

X, —analysis

a

y —observations
X, = X, T K (y —H Xb) x, — background model
H -forward operator [physics + Z]
K = Pb HT(H Pb HT + R)'l K - Kalman gain
P, —background model error covariance
R - observational error covariance
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AMPERE data: Uncertainty Estimation

. . . November 29, 2011
" Estimate uncertainty by looking at 14:40:00 - 14:50:00 UT

variation in values below
resolution of basis functions
(~2.5°A, 1h MLT)

" For vectors with <5 neighbors, use
median of variance values
calculated as above, multiplied
by data quality flag (~0.7 — 1.3)
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Empirical Orthogonal Function (EOF) analysis

» A variant of principal component analysis (PCA)

" Technique to estimate dominant modes of variability in a data set
(Decompose into eigenmodes & eigenvalues)

= Calculated in terms of magnetic vector potential: AB, =V x A,

A (x,1) = A" (x) + ¥ (1) EOF)(x)
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Data quality issues
* Difficult to obtain clean EOFs using just 1 week of data with low SNR

= Higher quality data in across-track direction vs. along-track direction
(likely due to attitude determination errors)

= Better EOFs using just across-track data

Relative Power

0.10]

0.01

Across-track only

Relative Power

0.01

Along-track only
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* Difficult to obtain clean EOFs using just 1 week of data with low SNR
= Higher quality data in across-track direction vs. along-track direction

Data quality issues

(likely due to attitude determination errors)

= Bette

Relative Power

]
0.10]

0.01

Along-track component
(plotted at 90degq)
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EOF Properties: Winter/Summer

= EOFs calculated independently for North/Winter & South/Summer hemispheres
= Dawn-dusk asymmetry in mean — different in two hemispheres
= Winter hemi. shows more night-side features, summer more day-side

., EOF 1 _EOF 2 .o EOF 3
o 0w - B

5

South
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Universal EOFs

= |deal to have set of universal EOFs that can be used to describe any AMPERE data

= Obtained by combing results from North/Winter & South/Summer
EOF 1 ] ,EOF 3
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EOF properties: Power Spectrum

= Mean accounts for more of total AB2 in summer than in winter
= Mean + 6 EOFs accounts for < 50% of total AB2

= =»Significant amount of small-scale variability &/or noise in data

N 10¢ Winter hemisphere data 1 1.0 Summer hemisphere data

! 1 ™

3 d

O O

(] (]

[= [ =

£ £

2 2

w 01y = w 0.1
o 0.10 o 0.10¢
a s o -
[« ()
= 2
© ©
O O
T 0.01; T 0.01;




CEDAR 2014, Hi-Lat Data Assim

Example Results
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Example Results
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Example Results
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Example Results




