Carbon dioxide in the polar stratosphere from AIM/SOFIE measurements

Yucheng Su ${ }^{1,2}$, Jia Yue ${ }^{1}$, Mark Hervig ${ }^{3}$, Tom Marshall ${ }^{4}$, Anne Smith ${ }^{5}$, Rolando Garcia ${ }^{5}$, Dong Guo ${ }^{2}$, Shengli Guo ${ }^{2}$, David Siskind ${ }^{6}$, James Russell W^{2} sycisaac@gmail.com

1. Center for Atmospheric Science, Hampton University, Hampton, Virginia, USA
2. Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China 3. Department of Atmospheric Science, University of Wyoming, Laramie 4. G \& A Technical Software, Newport News, Virginia, USA

Abstract

Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is an important greenhouse gas and it is key to the energetics and dynamics of the stratosphere and mesosphere. Distributions of the CO_{2} volume mixing ratios (VMR) in the stratosphere (from 30 up to $\sim 60 \mathrm{~km}$) have been measured from the $\mathrm{CO}_{2} 4.3 \mu \mathrm{~m}$ band by Solar Occultation for Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite. This is the first time that the $\mathrm{CO}_{2} \mathrm{VMR}$ has been retrieved from space in the $30-60 \mathrm{~km}$ altitude range. The data set spans from April 2007 to current date. The retrieval of CO_{2} is performed by using a non-local thermodynamic equilibrium (non-LTE) scheme and refraction derived temperature. In this paper we present SOFIE CO_{2} VMR time series and its seasonal variation. The agreement between the SOFIE CO_{2} trend and Mauna Loa surface measurement suggests that the retrieval algorithm is reliable. Seasonal variation of CO_{2} is compared with simulations using the Specified Dynamics version of the Whe Amosphere Communty Crate (SD-WACCM) The CO_{2} distribution is driven by the general circulation, ascending in southern
 CO_{2} variations in the northern hemisphere. Aud last we warming (SSW) causes strong CO_{2} variaions in the norter hemishe. A last, wo 2009 and discuss ${ }^{2}$ the dynamical mechanisms with the help of SD-WACCM.

SOFIE measurement

The data after 1st, 2015
is ignored because of the decending orbit

Above top height, CO_{2} data is | $\begin{array}{l}\text { Above top } \\ \text { not valid }\end{array}$ |
| :--- |

Figure 2. Time series of the CO2 retrieval top height. Red indicate the So
and blue indicate the Northerr Hemisphere. The bottom height is 30 km .

Seasonal variation of SOFIE CO_{2}

Figure 5 SOFIE annual meanand CO_{2} and SD -WACCM annual
meanand CO_{2} as functions of month and height. (upleft: SOFFI Southern Hemisphere, urigight: SD-WACCM Southern Hemisphe downleft: SOFIE Northern Hemisphere, dowright: SD-WACCM
CO_{2} variation in SSW events
2009
2013

The change of mean residual circulation

Figure 8 . Mean residual circulation in the stratosphere before SSWs and affer SSWS. A view factor has been multiplied
bthe vertical velocity to compensate for the biased aspect ratio. Contour Ine is the vertical speed.

After SSWs

Polar vortex: broken down
Poleward/downward circulation: enhanced Stratospheric air: downward

Conclutions

- SOFIE CO_{2} trend at 45 km : ~2ppmv/year $\approx M L O \mathrm{CO}_{2}$ trend.
- SOFIE global annually average profile bigger than SD-WAACM profile $\sim 4 \mathrm{ppmv}$ at $\sim 40 \mathrm{~km}$.
- SH: SOFIE CO_{2} ascending in March to May at $\sim 40 \mathrm{~km}$, decending in July, August and September at $\sim 50 \mathrm{~km}$.
- NH: SOFIE CO_{2} increased after SSWs at $\sim 45 \mathrm{~km}$.

