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Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere,
which is fragile to solar X-ray flares.
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Figure 1: Typical solar flare event and its impacts on various HF systems: (a) GOES-15 X- 1 Model considers first two frequency bins (X-ray) of the EUVAC model as me bl me T I NOAA, Global D-Region Absorption Prediction Documentation, 2015.
ray sensor data, (b) FoV Doppler velocity scan plots for m SuperDARN Blackstone radar, (c) solar flux. Figure 6: Comparison of modeled output versus riometer data: (a) time evolution of electron 0 Davies, lonospheric Radio 1990.
SuperDARN (Blackstone, beam 7) received power response during solar flare, (d) riomerer density at different altitude; (b) riometer (Ottowa station) absorption data versus model

(Ottowa station) response (HF absorption) to the solar flare.  Chapman ionospheric profile and no grazing angle effect. absorption data. Q Schunk & Nagy, lonospheres, 2009




