Kinetic modeling of auroral ion Outflows observed by the VISIONS sounding rocket

EMBRYRIDDLE
R. M. Albarran ${ }^{1}$, M. Zettergren ${ }^{1}$

Embry-Riddle Aeronautical University

Motivation

The ionosphere plays a sisnificant role in loading the magnetosphere plasma populations (Zeng, [2008]). Moreover, the energization and outflow of ions in the polar ionosphere
was first observed by Shelley et al. in 1972 and has been reported by other satellite was first observed by Shelley et al. in 1972 and has been reported by other satellite
missions and simulation models (Retterer, [1983], Crew [1990]). Unlike the strongly field-aligned beam distributions generated in the dayside cleft/cusp, the ion conic formations in the cusp have peak fluxes at a pitch angle relative the field-aligned directions. The conic formation in velocity space is thought to be generated by gradual heating of
ions. In this study, we present ion conic distributions generated by a 3D kinetic ion ions. In this study, we present ion conic distributions generated by a 3 D kinetic ion
nodel with ICR wave heating. This model is used to reconstruct ENA traiectories and on outflow source regions as observed by satellites and sounding rockets - and in this ase the VISIONS sounding rocket.
Magnetic Dipole Coordinates
he Earth's magnetic dipole field is with no free currents and spherical boundary condi-

$$
\mathbf{B}=\left[\frac{2 m \cos (\theta)}{r^{3}}\right] \hat{\mathrm{e}}_{\mathbf{r}}+\left[\frac{m \sin (\theta)}{r^{3}}\right] \hat{\mathbf{e}}_{\theta}
$$

where $B=|\mathbf{B}|=\frac{m \sqrt{\ell}}{r^{3}}, \ell=1+3 \cos ^{2}(\theta), \mathbf{B}=B \hat{e}_{\mathbf{q}}, r=R_{0} \sin ^{2}(\theta)$ and $\theta=\arcsin \left(\sqrt{r / R_{0}}\right)$, The dipole coordinate system $\left(q, p, \theta_{d}\right)$ has q along the field line, p as the L -shell, and θ^{\prime} he dipole longitud.

$$
q=\frac{R_{E}^{2} \cos (\theta)}{r^{2}}=\frac{R_{E}^{2} \cos (\theta)}{R_{0} \sin ^{4}(\theta)} \quad \quad p=\frac{r}{R_{E} \sin ^{2}(\theta)}=\frac{R_{0}}{R_{E}}
$$

here $m=\mu_{0} M_{0} R_{E}^{3} / 3=B_{E} R_{E}^{3}, \mathrm{M}=M_{0} \hat{e}_{z}$ is Earth's magnetic moment, $B_{E}=m / r^{3}$ is B at equator $(\theta=$
line at equator.
The kinetic equations of motion of this model are performed in Cartesian unit basis $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{e}_{z}$ to avoid time-dependent unit vectors, although, the forces are developed in magnetic dipole coordinates ($\left.\hat{e}_{q}, \hat{e}_{p}, \hat{e}_{\rho_{\phi}}\right)$. The Cartesian and dipole systems are related
$\hat{\mathrm{e}}_{\mathrm{x}}=[3 \cos (\theta) \sin (\theta) \cos (\phi) / \sqrt{\ell}] \hat{\mathrm{e}}_{\mathrm{q}}+\left[\cos (\phi)\left(1-3 \cos ^{2}(\theta)\right) / \sqrt{l}\right] \hat{\mathrm{e}}_{\mathrm{p}}+[\sin (\phi)] \hat{\mathrm{e}}_{\varphi_{d}}$
$\hat{\mathrm{e}}_{\mathrm{y}}=[3 \cos (\theta) \sin (\theta) \sin (\phi) / \sqrt{\ell}] \hat{\mathrm{e}}_{\mathrm{q}}+\left[\sin (\phi)\left(1-3 \cos ^{2}(\theta)\right) / \sqrt{\ell}\right] \hat{\mathrm{e}}_{\mathrm{p}}-[\cos (\phi)] \hat{\mathrm{e}}_{\mathrm{e}_{\mathrm{d}}}$
$\hat{e}_{t}=\left[\left(3 \cos ^{2}(\theta)-1\right) / \sqrt{\lambda}\right] \hat{e}_{\mathrm{q}}+[3 \cos (\theta) \sin (\theta) / \sqrt{\ell}] \hat{e}_{\mathrm{p}}$
$\hat{\mathrm{e}}_{\mathrm{q}}=[3 \cos (\theta) \sin (\theta) \cos (\phi) / \sqrt{l}] \hat{\mathrm{e}}_{\mathrm{x}}+[3 \cos (\theta) \sin (\theta) \sin (\phi) / \sqrt{\ell}] \hat{\mathrm{e}}_{\mathrm{y}}+\left[\left(3 \cos ^{2}(\theta)-1\right) / \sqrt{\ell}\right] \hat{\mathrm{e}}_{\mathrm{z}}$
$\hat{\mathrm{e}}_{\mathrm{p}}=\left[\cos (\phi)\left(1-3 \cos ^{2}(\theta)\right) / \sqrt{l}\right] \hat{\mathrm{e}}_{\mathrm{x}}+\left[\sin (\phi)\left(1-3 \cos ^{2}(\theta) / \sqrt{l}\right] \hat{\mathrm{e}}_{\mathrm{y}}+[3 \cos (\theta) \sin (\theta) / \sqrt{l}] \hat{e}_{\mathrm{e}}\right.$

Figure 1: Configuration space in Cartesian, spherical, and magnetic dipole ($\left.\hat{e}_{q}, \hat{e}_{\mathrm{p}}, \hat{e}_{\phi 6)}\right)$ coordinates where R_{E} is the Earth radius, $r=R_{0}$ at the equator $(\theta=\pi / 2)$, and $N_{\text {mag }}$
$\mathrm{S}_{\text {mag }}$, and $\mathrm{N}_{\mathrm{geo}}\left(\mathrm{S}_{\mathrm{geo}}\right)$ are the North (South) magnetic and geographic poles, respectively.

Phase-Space Initialization
The guiding center kinetic model includes the magnetic mirror force $\mathbf{F}_{\mathrm{M}}=\left|\mathrm{F}_{\mathrm{M}}\right|_{\mathrm{e}_{\mathrm{q}}}$ and the field-aligned Earth's gravitational force $\mathbf{F}_{\mathbf{G}}=\mid \mathbf{F}_{\mathbf{G}} \hat{\mathbf{e}}_{\mathbf{q}}$, where $\mathbf{F}_{\mathbf{M}}=m_{\mathbf{a}} \mathbf{a}_{\mathbf{M}}=$
 position is thus

$$
\begin{array}{r}
\mathrm{a}=\left\{3 F_{N} \cos (\phi) \cos (\theta) \sin (\theta) / m_{i} \sqrt{\ell}\right\} \hat{\mathrm{e}}_{\mathrm{x}}+\left\{3 F_{N} \sin (\phi) \cos (\theta) \sin (\theta) / m_{i} \sqrt{\ell}\right\} \hat{e}_{\mathrm{y}}+ \\
\left\{F_{N}(3 \cos (\theta)-1) / m_{i} \sqrt{\ell}\right\} \hat{e}_{e_{z}},
\end{array}
$$

where $F_{N}=\left|\mathbf{F}_{\mathbf{N}}\right|=\left|\mathbf{F}_{\mathbf{M}}\right|+\left|\mathbf{F}_{\mathbf{G}}\right|$, and m_{i} is the ion mass.
Intial particles positions are allocated in each configuration space cell according to a normalized steady-state ion density profile in Cartesian coordinates. The roots of the following quartic polynomial transform these positions into dipole coordinates (Huba, [2000]):

$$
q^{2}\left(r / R_{E}\right)^{4}+p^{-1}\left(r / R_{E}\right)-1=0
$$

nitial velocities have an 3D Maxwellian distribution in Cartesian coordinates where the feld-aligned components are $v_{\|}=v_{q}$ and $v_{\perp}=\sqrt{v_{\rho}^{2}+v_{\phi, t}^{2}}$. This transformation gives
an energetically relaxed ion conic distribution. When ICR heating is turned offt the distribution is a drifting Maxwellian with time, otherwise, v_{\perp} is updated accordingly.

Figure 3: Intitial field-alig
ond simulation duration.
3D Kinetic Solver
A fourth-order Runge-Kutta (RK4) scheme is employed to integrate the net acceleration components in Cartesian coordinates for the velocities and positions. The solver is conducted on a time domain $[A B]$ over N_{t} time-steps with a time-step of $h=(B-A) / N_{t}$. The solution is of order n. he oDe system is $a_{i}=v_{i}$ where $a_{i}^{n}=a_{i}\left(x^{n}, y^{2}\right.$
$k_{1}=a_{i}^{n}=a_{i}\left(x^{n}, y^{n}, z^{n}\right), \quad k_{2}=a_{i}^{n+h / 2}=a_{i}\left(x^{n+h / 2}, y^{n+h / 2}, z^{n+h / 2}\right)$,
where
$r^{r+h}=i^{n}+h v_{i}^{n+h / 2}=i^{n}+h v_{i}^{n}+\left(h^{2} / 2\right) a_{i}^{n} \forall i=x, y, z$, where accelerations are computed given previous positions, where $a_{i} \neq a_{i}\left(v_{i}\right)$. To ensure a guiding center model, the Carte-
sian velocity components are recast into dipole velocity components where u is set to sian velocity components are recast into dipole velocity components where v_{p} is set to
eroo such that no particles overshoot the L-shell. In this study the L-shell difference is Ess than 10^{-3} of an R_{E}. A similar scheme is employed to solve $v_{i}=\dot{r}_{\text {n }}$.

Figure 4: Spherical coordinate (r, θ, ϕ) kinematics for arbitrarily selected particles.

Figure 5: Dipole coordinate (q, p, ϕ_{d}) kinematics for arbitrarily selected particles, where Ion Cyclotron Resonance Heating

Once the initial v_{\perp} value is computed according to the initial Maxwellian velocity disribution, it is updated on every time-step as $\left.v_{1}^{n+1}=\sqrt{\left(v_{1}^{n+1}\right)^{2}}+\left(v_{1}^{n+1}\right)^{2}\right)^{2}$ according to CR heating by broad-band ELF waves, where $v_{11}^{n+1}=v_{11}^{n}+D_{V_{11}, v_{1}^{n+1}}^{n+1}=v_{12}^{n}+D_{11}^{n}$,
 a zero-mean Gaussian distribution. The variances of the distribution along \hat{e}_{221} and $\hat{e}_{\perp 2}$
are $2 D_{\Perp 1} h$ and $2 D_{\perp 2} h$, respectively. The perpendicular velocity diffusion coefficient $D_{\Perp 1}$ along $\hat{e}_{\perp 1}$ and associated heating rate $\tilde{W}_{\perp 1}=2 m_{i} D_{\perp 1}$ (similarly along \hat{e}_{12}) is:

$$
D_{\perp 1}=\left(q_{i}^{2} / 4 m_{i}^{2}\right) \eta \chi_{\perp 1}\left|E_{\perp 0}\right|^{2}\left(\omega_{g} / \omega_{g 0}\right)^{-\alpha_{11}} \quad \dot{W}_{\perp 1}=\left(q_{i}^{2} / 2 m_{i}\right) \eta \chi_{\perp 1}\left|E_{\perp 0}\right|^{2}\left(\omega_{g} / \omega_{g 0}\right)^{-a}
$$

$D_{\perp 2}=\left(q_{i}^{2} /\left\langle m_{i}^{2}\right) \eta \eta_{\perp 2}\left|E_{\perp 0}\right|^{2}\left(\omega_{g} / \omega_{00}\right)^{-a_{2}}\right.$
$\dot{W}_{\perp 2}=\left(q_{i}^{2} / 2 m_{i}\right) \eta \chi_{\perp 2}\left|E_{\perp 1}\right|^{2}\left(\omega_{g} / \omega_{g 0}\right)^{-\alpha_{12}}$
where $\eta=0.125$ is the fraction of BBELF wave power that is left-hand polarized, $\chi_{\Perp 1}$ is the fraction of wave power along $\hat{e}_{\perp 1},\left|E_{\perp 1}\right|^{2}=0.3 \mathrm{mV}^{2} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~Hz}^{-1}$ is the total electric field spectral density, and $\alpha_{\perp 1}=\alpha_{\perp 2}=1.7$ is the spectral index at a reference gyrofrequency of $\omega_{g 0}=2 \pi 6.5 \mathrm{~Hz}$ (Wu, [19999]).

Figure 6: ICR heating parameters where $\gamma_{11}\left(\gamma_{12}\right)$ is a random number from a Gausan distribution, $D_{\perp-1}\left(D_{12}\right)$ is the velociy diffusion coefficient, and $D_{V \perp 1}\left(D_{V \perp 2}\right)$ is the

Figure 7: Mirror force parameters where $\partial B / \partial s$ it the field-aligned gradient of the magnetic field strength, $|\mathbf{B}|, \omega_{G}$ is the cyclotron frequency, α is particle pitch-angle, $\epsilon_{\|}(\epsilon$ Conclusions \& Future Work

Figure 8: Final velocity-space distribution function after 250 second simulation duration The phase-space distributions generated in the presence of a magnetic mirror force, gravity, and ICR heating are ion conic (loss cone) distributions. Ion conics have been ob-
served by in auroral passings of the Dynamics Explorer I satellite (Crew, [1990), and replicated by numerical studies (Bouhram, [2003]). The source regions of ion outflow direct the trajectories of the ENAs detected by the VISIONS sounding rocket. Future work includes scaling the number of particles up to create smooth distributions functions with MPI and using a fluid electron energy equation solver to produce a downward par-
allel electric field consistent with the electron pressure. This ambi-polar electric field will be tested against the ICR heating to gauge the "pressure cooker" effect across the field-aligned potential structure. Ultimately, a 3D kinetic ENA model will be constructed oc compliment this ion model. Virtual rockets flown through the computational domain on populations detected onboard.
References
-Crew, G. B., Chang, T., Retterer, J. M.. "Ion Cyclotron Resonance Heated Conics: Theory and Observations," Jourral of Geophysical Research, Vol. 95, No. A4, pp 3959-3985, 1990

- Bouhram, M., Malingre, M., Jasperse, J. R., Dubouloz, N., Sauvaud, J.-A., "Modeling transverse heating and outlow of ionospheric ions from the dayside cusp/clet. Applications," Annales Geophyssicae, Vol. 21, pp. 177-1791, 2003
Retterer, J. M." "Ton Acceleration in the Superauroral Region: a Monte Carlo Model" Geophysical Research Letters, vol. 10, No. 7, pp. 583-586, 1983
Cleft Ion Fountain dayside ionospheric outflows", Geap (SED) as possible sources for Clet ton Fountain dayside ionospheric outflows," Geophysical Research Letters, Vol. Wu, X.-Y., Horwitz, J. L., Estep, G. M., Su, Y.J.J., Brown, D. G., Richards, P. G., "Dynamic fluid-kinetic (DyFK) modeling of auroral plasma outflow driven by soft lectron precipitation and transverse ion heating," Journal of Geophysical Researe
Vol. 104, No. A8, pp. $11263-17275,1999$

Acknowledgments
This poster was typeset in LTEX.

