

Using the development process of the Venus Global Ionosphere-Thermosphere Model to understand the importance of planetary attributes on Earth's atmosphere

Emily L. Judd — Faculty Advisor: Aaron Ridley — University of Michigan: Climate and Space Sciences and Engineering — CEDAR — 21 June 2017

Abstract

ve ho m at la of cr cł	The Global Ionosphere-Thermosphere mosphere of Earth, with various versions ersion for Venus is under development. Due ow the Earth's atmosphere would change version odel (V-GITM) development includes synctributes such as distance from the Sun, plack of an intrinsic magnetic field will also be f high carbon dioxide levels and different ceating an atmospheric model of Venus will haracteristics on Earth's atmosphere. In this poster, two planetary attribut n planetary axis tilt and rotation rate, highli	s for studies of Mars, Jupiter, and uring this process, we will conduct s when given certain characteristics of stematic parameter variances of co anetary axis tilt, and rotation and r be implemented, along with an atmost ratios of minor species. This met Il allow for a closer look at the imp es will be discussed. Simulations h	
	Motivation		
\diamond	 Joals: Develop a version of GITM for Venus Investigate how varied planetary attributes affect the atmosphere 	 Objectives: ♦ Examine how varying planaffects the atmosphere ♦ Explore how varying planaffects the atmosphere 	
	Develop	ment Process	

Simulation Setup

- \diamond Created GITM development version
- \diamond Modified the model to include an option for Venus

Axial Tilt Test Parameters

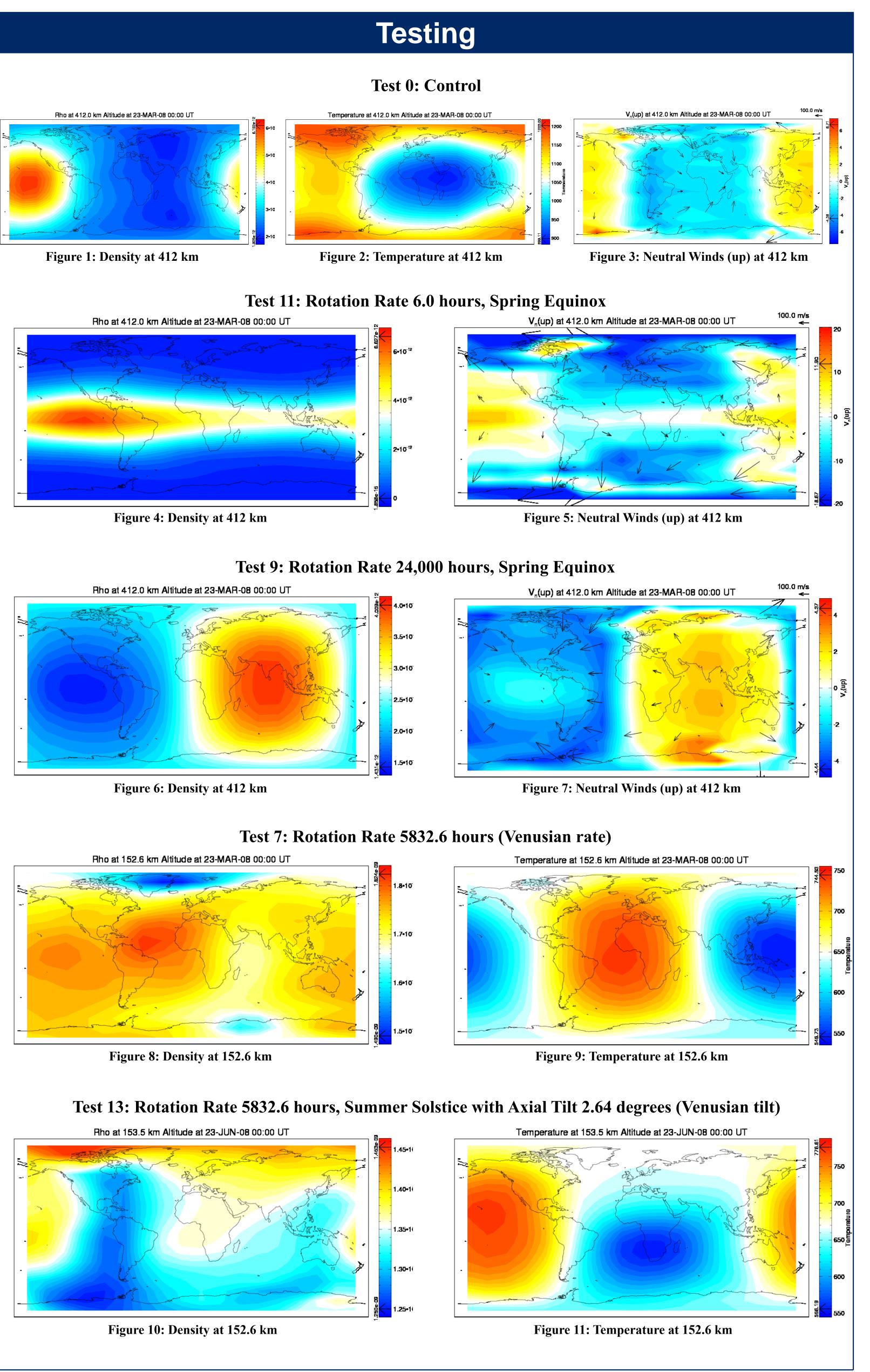
- \diamond Planetary characteristics
 - \diamond Venusian rotation period: 5832.6 hours, counterclockwise
 - \diamond Venusian days per Earth year: 1.503
 - \diamond Venusian axial tilt: 2.64 degrees
- \diamond Simulation timeframe
- \diamond 20 June 2008 through 23 June 2008
- \diamond Solstice timeframe allowed maximum tilt effect

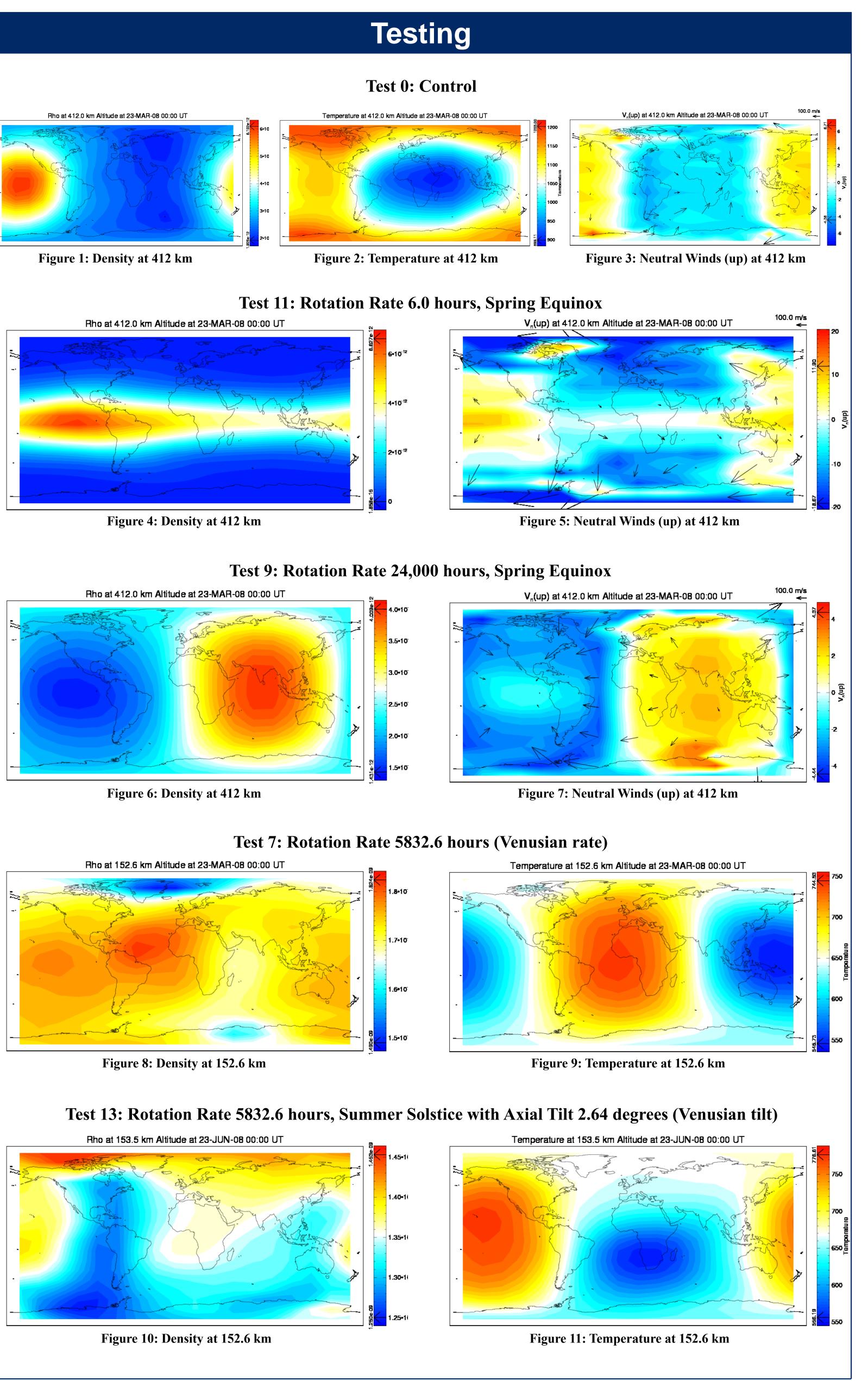
Rotation Period Test Parameters

- \diamond Planetary characteristics
 - \diamond Rotation period: 6–1000 hours
 - ♦ Days per year: 0.36–1461
 - \diamond Venusian axial tilt: 2.64 degrees
- \diamond General simulation timeframe
- 20 March 2008 through 21 March 2008
- \diamond Equinox timeframe negated tilt effect during rotation rate tests
- \diamond Special cases
- \diamond Certain tests were run for an extended timeframe, especially the more extreme cases
- \diamond 20 March 2008 through 23 March 2008
- \diamond Tests 7, 9, 10, and 11 and control

- **Simulation Initial Parameters** \diamond GITM parameters
- \diamond Resolution: 10 degrees latitude by 20
- degrees longitude
- \diamond No tidal influence
- \diamond No dynamo influence
- \diamond Flat boundary conditions
- \diamond Earth planetary characteristics
 - \diamond Rotation period: 24.0 hours
- ♦ Days per year: 365.25
- \diamond Axial tilt: 23.5 degrees
- \diamond General simulation timeframe 20 March 2008 through 21 March 2008
- \diamond Midway between solar maximum and solar minimum to use average solar
- conditions

Table 1: Rotation Period Test Parameters


Test Number	Ratio to Earth	Rotation Period (hours)	Days per Year
1	1	24	365.25
2	2	48	182.625
3	4	96	91.31
4	10	240	36.525
5	100	2400	3.65
6	200	4800	1.826
7	243.025	5832.6	1.503
8	400	9600	0.913
9	1000	24,000	0.36525
10	0.25	6	1461
11	0.5	12	730.5


used to model the nd Titan. Currently, a t systematic studies of of Venus. The Venus certain key planetary revolution rates. The nospheric composition ethodical approach to nportance of planetary

have been conducted rth and Venus

planetary axis tilt

anetary rotation rate

Results at 412 km Altitude

- \diamond Faster rotation rates \diamond Density is not as dependent on time of day, instead it forms a band of higher density near the equator
 - \diamond Temperature is still somewhat dependent on time of day, and cooler
- temperatures are still found at the poles \diamond Neutral winds going up are nearly 0 m/s
- \diamond Slower rotation rates
- \diamond Density is dependent on time of day and is higher on the Eastern hemisphere \diamond Temperature is dependent on time of day and is higher on the Eastern hemisphere
- \diamond Neutral winds going up are slightly higher on the Eastern hemisphere

Results at 153 km Altitude

- \diamond Venusian rotation rates
- \diamond Density is lower near the poles
- \diamond Temperature is dependent on time of day and is unexpectedly higher at night
- \diamond Venusian rotation rate and axial tilt on summer solution \diamond Density is lower at the poles
- \diamond Temperature is dependent on time of day and is lower at night

- \diamond Run simulations for longer time periods
- \diamond Allow for clockwise planetary rotation
- \diamond Increase simulation resolution

Next Steps in Creating V-GITM

- \diamond Gravity force
- \diamond Planetary radius \diamond Magnetic field (or lack thereof)
- \diamond Planetary orbital characteristics
- \diamond Change atmospheric chemistry to reflect that of Venus
- ♦ Will use equations from the Venus Thermospheric General Circulation Model
- \diamond Test effects of running simulations at solar maximum and solar minimum

- ♦ Ridley, A. J., Deng, Y., and Tóth, G., "The Global Ionosphere-Thermosphere Model," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 68, No. 8, 2006, pp.839-864. doi: 10.1016/j.jastp.2006.01.008
- ♦ Williams, D., "Venus Fact Sheet," [online], https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html [retrieved June 2017]. ♦ Williams, D., "Planetary Fact Sheet—Metric," [online],
- https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html [retrieved June 2017].

Conclusions

Future Work

- **More Detailed Simulations on Effects of Rotation Rate and Axial Tilt**
- \diamond Test additional axial tilts in between Earth and Venus
- \diamond Change additional planetary parameters

References

Acknowledgements

I would like to thank my advisor, Dr. Aaron Ridley, for encouraging me to pursue this research project. He has been instrumental in teaching me many of the skills necessary for this project, including using a Linux operating system and basic programming skills in Python, Fortran, and IDL. Several of his IDL codes were used in processing the simulation data and creating the images seen here.