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ABSTRACT RESULTS

In this research, we compare the statistical characteristics

of DW1 (migrating diurnal tide) short-term variability using Section A: Multiple Regression Model Section C: Probability Density Functions
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of the above predictors, their relative variance, cross-
correlations and probabillity density functions (PDFs) of the
short-term tidal variability (< 1 month) were investigated and
compared between the two datasets. Many of the statistical

properties agree very well between the two datasets. The Figure 3: a) Fitting coefficients of tidal variability due to deterministic indices: solar cycle, ENSO, QBO for All the variabl_es_i_n_ multiple regres_sion model hqs well define
model should be able to provide some explanations of the eCMAM (left) and SABER (right) as a function of height and latitude. long-term variabilities and we define these variables as the

physical processes underlying these statistical properties, b) Fitting coefficients of tidal variability due to seasonal harmonics: 12, 6, 4, and 3-month variations for eCMAM deterministic part and the residual as the stochastic part of the

which Is part of our future research. (left) and SABER (right) as a function of height and latitude. model. Wavelet analysis of the stochastic part reveals both
short and long term (>1 month) variabilities in the residue.

These variations are not detained by the long term variabilities.
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Section B: Stochastic Part of the Model

M OTIVATI O N SRR - datermirilisfoidangbanmat il lansquator (0) | ecmman masidue anort at 100Km in aquater  SABER Residue short at 100km in aguator The short-term tidal variability Is not correlated between

) : P r : adjacent latitudes or adjacent days, strong correlation within
adjacent heights of only 10 — 20 km. Relative variance of short
term is minimum where the DW1 is maximum.
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dependent probability density functions (TPDFs) to examine the
underlying statistics governing the short-term temporal
variability and apply the thermodynamic budget equation to
study physical mechanism.
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Figure 4. a) Wavelet analysis of Un-deterministic part of the long-term tidal variability in the residue eCMAM
(top) and SABER (bottom). REFERENCES
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Figure 1. a) eCMAM and SABER DW1 at 100 km from
2003 to 2010 as a function of latitude and time.

b) wavelet analysis of DW1 temporal variability at 100km
and the equator for both eCMAM and SABER.
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Solar Flux. Figure 5 : a) Top panel: Short-term tidal variability correlation with height at the equator for eCMAM (left) and

SABER (right); Bottom panel: Short-term tidal variability correlation with latitude at 100 km for eCMAM (left) and
SABER (right); b) Relative variance of tidal variability due to short-term variation for eCMAM (left) and SABER
(right) as a function of height and latitude.
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tide(t); = tide;y+a;(t) + B;E(t) + x;Q(t) + §;S(t) + 2 a; xcos(wyt + by ) + &(t)
k=1




