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Introduction

Data	and	Stability	Parameters

ALO

Month Total	nights

May,	2014 3	(0)

Aug-Sep,	2014 16	(0)

Jan-Feb,	2015 16	(6)

Apr,	2015 13	(8)

July,	2015 10	(10)

Oct-Nov,	2015 8	(7)

Feb-Mar 2016 16	(16)

June	2016 6	(6)

Oct-Nov	2016 17	(17)

Apr-May	2017 8	(8)

Nov-Dec 2017 20 (20)

Jan 2018 12 (12)

Total 122 (87)

1.	Data	Summary

Stabilities	and Turbulence

Summary

Abstract:				The	square	of	buoyancy	frequency	N2 and	the	Richardson	number	Ri are	commonly	used	to	characterize	the	convective	and	dynamic	stabilities	of	the	atmosphere,	respectively.		We	report	a	detailed analysis	of	these	parameters	based	on	high-resolution	temperature	and	
horizontal	wind	measurement	made	with	Na	Lidar	at	Andes	Lidar	Observatory	(30.2˚S,70.7˚W) and	compared	with	results	from	earlier	measurement	made	at Maui,	HI,	USA	(20.7˚N,	156.2˚W). Uncertainties	and	biases	of	the	instability	probabilities	due	to	photon	noise	are	analyzed,	and	the	
biases	are	subtracted	from	the	measured	probabilities.		The	seasonal	and	altitudinal	variations	of	the	instabilities	probabilities	show	the	combined	effect	of	seasonal	variation	of	background	atmosphere	and	wave	activities.	 When	compared	with	gravity	heat	flux,	turbulence	heat	flux,	and	
thermal	diffusion,	we	found	that	their	variations	are	opposite	(more	dissipation	in	more	stable	atmosphere)	but	can	be	explained by	gravity	wave	intermittency.		This	has	implications	for	parameterizing	wave	effects	in	models.

In	the	upper	mesosphere,	atmospheric	instabilities	are	key	dynamical	processes	
that	are	responsible	for	dissipation	of	gravity	waves	and	their	energy	and	
momentum	deposition	to	the	background	atmosphere.		Two	main	instability	
processes	are	the	convective	and	dynamic	(shear)	instabilities.		The	atmosphere	
becomes	convectively	unstable	when	N2<0	and	becomes	dynamically	unstable	
when	0<Ri<1/4,	where	N	is	the	buoyancy	frequency	related	to	vertical	
temperature	gradient	and	Ri is	the	Richardson	number	related	to	vertical	
gradient	of	horizontal	wind.
In	this	study,	we	examine	the	structure	and	seasonal	variations	of	convective	and	
dynamic	(shear)	instabilities	in	the	upper	mesosphere	by	using	3-year	high-
resolution	wind	and	temperature	data	obtained	with	the	Na	Lidar	at	Andes	Lidar	
Observatory	(30.2˚S,70.7˚W) and Maui,	HI,	USA	(20.7N,	156.2W). Even	with	
high-quality	lidar	data,	accurate	measurement	of	N2 and	Ri requires	careful	
analysis	of	their	uncertainties	and	biases	arising	from	errors	in	temperature	and	
horizontal	wind	due	to	photon	noise	in	the	measurement	process.		We	present	
here	
1. a	detailed	analysis	of	the	bias	of	measured	probabilities	of	instabilities,	

P(N2<0), P(S>40)	and	P(0<Ri<1/4),
2. seasonal	and	vertical	variations	of	these	probabilities,	
3. and	 the relation between the	instability	parameters and turbulence.

• Na	Lidar	Measurement	is	uniquely	capable	for	MLT	stability analysis
• Uncertainties	and	biases	of	P(N2<0), P(S>40)	and	P(0<Ri<0.25)	are	derived	

and	biases	are	corrected
• Seasonal	variations	of	stability parameters	are	largely	controlled	by	

background
• ALO	measurements	show	(compared	with	Maui)	very	low	P(N2<0)	~1%	and	

high	P(0<Ri<0.25)	~10%.
• GW	and	dissipation	and	turbulence	are	strongest	in	June/July	(probably	due	

to	MWs)	though	shear	is	weak.
• March	is	dynamically	most	unstable	while	GW	activity	is	weakest
• June/July:	large	intermittency	+	stable	background	— small	P(0<Ri<0.25)	+	

strong	GW	dissipation	and	turbulence
March:	small	intermittency	+	and	less	stable	background	— high	
P(0<Ri<0.25)	+	weak	GW	dissipation	and	turbulence

• Stability	criteria	may	not	be	sufficient	for	parameterization	of	eddy	
diffusion.	Wave	intermittency	is	another	important	factor.

2.	Stability	Parameters
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Figure	1.	Temperature	and	horizontal	wind	on	April	22nd,	2017	and	
corresponding	stability	parameters	and	wind	shear.	
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p

(du/dz)2 + (dv/dz)2 Ri = N2/S2

Figure	2.	Histograms	of	N2 , S and	Ri	from	all	measurements	between	85-100	
km	at	ALO.		Red	in N2 indicates	convective	instability	(N2<0).	Red	in S indicates	
large shear (S>40	m/s/km).	Light	blue	indicates	dynamic	instability	(0<Ri<0.25).

• Probability	of	convective	instability	P(N2<0)	is	defined	as	the	fraction	of	
measurements	with	N2<0.	Probability	of	large shear P(S>40)	is	defined	as	the	
fraction	of	measurements	with S>40	m/s/km. And probability	of	dynamic	
instability	P(0<Ri<0.25)	is	the	fraction	of	measurements	with	0<Ri<0.25

• Photon	noise	creates	errors	in	measured	temperature	and	wind.	These	errors	
propagate	to	N2 and	Ri and	then	to	P(N2<0), P(S>40)	and	P(0<Ri<0.25).	There	
are	both	random	errors	and	biases	in	P(N2<0), P(S>40)	and	P(0<Ri<0.25).	

• Monte-Carlo	simulations	are	used	to	estimate	these	errors	and	biases.	Random	
Gaussian	errors	are	added	to	temperature	and	wind	to	obtain	the	
corresponding	distributions	of	P(N2<0), P(S>40)	and	P(0<Ri<0.25).	The	standard	
deviations	and	differences	in	mean	values	are	the	random	errors	and	biases,	
respectively.

• Simulations	show	that	the	random	errors	are	about	1~2%	for	P(N2<0), 10~40%	
for P(S>40)	and	-5~10%	for	P(0<Ri<0.25).		The	biases	are	not	negligible	but	can	
be	corrected.

Figure	3.	Biases	of	P(N2<0), P(S>40)	and	P(0<Ri<0.25).	as	functions	of	temperature	
and	wind	errors	and	probability	values. a1~a3 are for altitude of 98-108km,	b1~b3
are for altitude of 88-98km and c1~c3 are for altitude of 78-88km.

Stabilities

Andes	Lidar	Observatory,	Cerro	Pachón,	Chile	
(30.3S,	70.7W)	(2014-2018),	1000	hr,	
temperature	every	month,	no	horizontal	wind	
in	May,	Aug	&	Sep
Maui,	HI,	USA	(20.7N,	156.2W),	250	hr,	in	7	
calendar months	(2001-2005).
The	number	of	total	observation	nights	for ALO
are	listed	in	the	right table.	The	numbers	in	
parenthesis	indicate	the	number	of	nights	when	
horizontal	wind	is	available.		The	total	nights	in	
each	calendar	month	for both ALO and Maui
are	shown	in	the	table	below.
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Figure	4.	Seasonal	and	altitudinal	distributions	of	P(N2<0), P(S>40)	and	
P(0<Ri<0.25	for	ALO	(a1~a3)	and	Maui	(b1~b3 ).

0 5 10 15 20 25 30
P(N2<0) (%)

85

90

95

100

al
tit

ud
e 

(k
m

)

ALO
Maui

0 5 10 15 20 25
P(S>40) (%)

85

90

95

100

al
tit

ud
e 

(k
m

)

ALO
Maui

0 5 10 15 20 25
P(0<Ri<0.25) (%)

85

90

95

100

al
tit

ud
e 

(k
m

)

ALO
Maui

Acknowledgements: This	work	is	supported	by	NSF	grants	AGS-1136208,	AGS-1229085 and	AGS-1136278.		Data	used	in	this	analysis	was	taken	mostly	by	Dr.	Fabio	Vargas.

Figure	10. Instability	
probabilities and
turbulence vertical heat
flux and thermal eddy
diffusion of ALO	in
March	(red)	and	July	
(blue).	

Turbulence plays a major role in the	upper atmosphere through constituents and
heat	transport. Guo	et	al.	(JGR	2017) showed	that	the	Na	wind/temperature	lidar	
at	ALO	is	capable	of	detecting	turbulence-scale	perturbations	and	providing	direct	
measurements	of	the	eddy	heat	flux	and	thermal	diffusion	coefficient. We	apply	
this	same	method to study the relationship between stabilities and turbulence.

Fritts and Dunkerton 1985, 
Liu, H-L, 2000
Liu, A. Z. 2009
Guo and Liu JGR 2018

P(N2<0), P(S>40)	and	P(0<Ri<0.25)	are	calculated	at 1.0 km	vertical	resolution
for	all measurement	within	each	calendar	month.	Biases	are	corrected	based	on	
the	mean	rms errors	in	temperature	and	horizontal	wind.

Figure	5.	Altitudinal	and seasonal	average of	P(N2<0), P(S>40)	and	
P(0<Ri<0.25) for	ALO	and	Maui	(b1~b3).

Compared	with	Maui, P(N2<0)	is lower (~1%) while	P(0<Ri<0.25) is higher 
(~10%)	at	ALO	— Much	higher	convective	instability	probability	in	Maui	and
much	higher	dynamic	instability	probability	in	Chile.

Figure	6 .	Seasonal	and	altitudinal	distributions	of	medians	 of N2, S and	Ri at ALO.

Figure	8.	Seasonal	and	
altitudinal	GW	variance,
heat	(enthalpy)	flux
and effective	thermal	
diffusivity at ALO.
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In Figure 6, S is large in March	and	Ri	is	small, so P(S>40) and	P(0<Ri<0.25)	as	
shown	in Figure 4-a2,a3	are high.		June/July	are	just	the	opposite.

Figure	9.	Seasonal	and	altitudinal	eddy	diffusion	based	on	measured	S	and	
Ri	at	ALO	and	Becker’s	formula.

Becker JAS 2009, 
Smagorinsky 1993

Kühlungsborn
Mechanistic	General	
Circulation	Model	

Figure 9 shows eddy	diffusion	K	is	smallest	in	winter,	and	largest	in	March,	which
is	opposite	to	the	measured	wave	dissipation	(heat	flux)	shown	in Figure 8.
Parameterizing	eddy	diffusion	based	on	stability	may	not	be	sufficient	to	properly	
represent	the	wave	dissipation.

In general, probabilities for convective and dynamic instabilities are higher
in March but turbulence flux and thermal diffusion are larger in July. The 
latter is consistent with result in Figure 8. In both March and July, the
vertical structures of thermal diffusivity are consistent with those of the 
corresponding P(0<Ri<0.25), indicating a correlation between turbulence 
diffusion and dynamic instability.
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Figure 8 shows that	GW	is	strong	in	June/July	(winter),	which	is	most	likely	due	to	
mountain	waves. GW	heat	flux	and	effective	thermal	diffusivity	indicate	GW	
dissipation. Strong	GW	dissipation	in	winter	corresponds	to	low	instability	
probability;weak dissipation	in	March	corresponds	to	high	instability	probability.
Wave	dissipation	is	controlled	by	both	wave	source,	amplitude,	and	background	
stability.	Stability	alone	is	not	sufficient	as	an	indication	of	wave	dissipation.

Figure	7 .	Seasonal	and	altitudinal	distributions	of	temperature, zonal wind and
meridional wind at ALO.

In Figure 7, S is large in March	and	Ri	is	small, so P(S>40) and	P(0<Ri<0.25)	as	
shown	in Figure 4-a2,a3	are high.		June/July	are	just	the	opposite. In Figure 6,
there 3 parameters are	calculated	from	high	resolution	data,	not	from	mean	
temperature	and	wind. So seasonal	variations	of	these	parameters	are	largely	
controlled	by	background, even we used data with GWs effects.


