

Introduction

On 21 January 2015, a sodium resonance lidar and advanced mesospheric temperature mapper (AMTM) observed intermittent propagation of a high frequency gravity wave (HFGW) through an inertial gravity wave (IGW) over Alomar, Norway. The evolving IGW can promote critical layers, reflection, evanescence, and tunneling as the HFGW propagates through alternating IGW phases. A high resolution anelastic numerical model is used to characterize the HFGW propagating through the IGW and account for the temporal variability in the observational data.

Methodology and Objectives

- Initialize HFGW with observed characteristics and propagate into lidar wind and temperature profiles
- Assess GW behavior for most likely λ_7 , ω_i , and amplitude
- Evaluate GW source intermittency and turbulence source
- Address discrepancies in amplitudes and intermittency between AMTM and lidar observations

Simulation Architecture

- 3D, anelastic, nonlinear, finite volume DNS Can resolve dissipation scales in the MLT
- Conserves mass, momentum, & kinetic energy
- Density scales with altitude

Architecture-Specific Definitions $\frac{\theta'}{\overline{\theta}} = -\frac{\rho'}{\overline{\rho}} + \frac{p'}{\overline{\rho}gH} \quad \mu = \mu_0 \frac{T_0 + c}{T + c} \left(\frac{T}{T_0}\right)^{\frac{3}{2}}$ $\frac{T'}{\overline{T}} = \frac{p'}{\overline{p}} - \frac{\rho'}{\overline{\rho}} = \frac{\theta'}{\overline{\theta}} + \frac{p'}{\overline{p}} \left(1 - \frac{\overline{p}}{\overline{\rho}gH}\right)$

	Sol	ution	variat	ble
$\frac{\partial \overline{\rho} u_i}{\partial t} + \frac{\partial \overline{\rho} u_i}{\partial t} + \partial \overline{\rho$	$\frac{\partial \overline{\rho} u_i u_j}{\partial x_j} =$	$-rac{\partial p'}{\partial x_i} +$	$-\left(rac{\overline{ ho} heta'g}{\overline{ heta}} ight.$	$-\frac{p}{H}$
$\frac{\partial \overline{ ho} \theta}{\partial t} +$	$-\frac{\partial \overline{\rho} \theta u_j}{\partial x_j} =$	$= \frac{\overline{\theta}}{c_p \overline{T}} \Big $	$\left[\mu\left(\frac{\partial u_i}{\partial x_j}\right)\right]$	

Guiding Observations

Same apparent HFGW at 21 UT and 24-25 UT with instabilities at 22-23 UT

Observed GW Characteristics

HFGW Parameters from 21 UT AMTM Observation:

HFGW Parameters from Lidar Observation:

 ω_{i} range: 0.008-0.016 s⁻¹ λ_7 range: 8-28km

Characterizing High Frequency Gravity Wave Propagation Through an Evolving Inertial Wave in the MLT Tyler Mixa^{1,2}, Katrina Bossert¹, Dave Fritts¹, Brian Laughman¹, Tom Lund³, Lakshmi Kantha² ¹Global Atmospheric Technologies and Sciences (GATS)-inc, Boulder, CO, USA ²University of Colorado Boulder, Boulder, CO, USA

$$\frac{\partial \overline{\rho} u_j}{\partial x_j} = 0$$

$$\frac{\partial \overline{\rho} u_j}{\partial x_j} = 0$$

$$\frac{\partial \overline{\rho} u_j}{\partial x_j} \left[\lambda_{i3} + \frac{\partial \overline{\rho} u_i}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$

$$\frac{\partial u_j}{\partial x_i} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial \overline{\rho} u_i}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) \right]$$

Background winds and temperatures include ~7 hour IGW, many higher frequency components

SABRE OH layer altitude: 86km

Ider, CO, USA

"Northwest Research	Associ	ates (NW	RA), Bou
Simulated G	5 W	Pro	pa
19-20 UT:			
Filterina			105
			100
 Critical layer intering Partial energy transr 	j al 8 nissi	on	95 [<i>mx</i>] 90
into evanescent regi	ion a	t later	Alt Alt
times			80 75
Scattered turbulence	e but	t no	70
wave visible in AMTI	Μ		ω _i reg
lidar and AMTM obs	ees w ervat	tions	0 (re
21 UT:			
ropagation			
Coherent HFGW obs	serve	ed in AM	MTM
Simulations show G	Wtu	nneling	
unrougn evanescent	. regi	ion at A	
Phase structure in lie	daro	bserva	tions
matches simulation	outr	outs	
Lower T' amplitude	in AM	MTM sh	own
by lidar in evanesce	nt re	gion	
22-23 UT:			
nstabilities	Ľ	105	2 UT
Instability features		100	
advect to the east		95 [<i>m</i> ₂] 90	
through AMTM and	do	85 Alt	
not align with wave		$\begin{array}{c} 80\\ \hline \\ 75 \end{array} \begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
vector or GW phases	S	70 <u> ω_{cr}</u> -0.02	u 0 0.02
Simulations show		N an As in Fi	a $\omega_i [s^{-1}]$ gure 1 fo
instability formation		vorti	city (ζ_y) s
with higher ω_{co} as			ITIIT
shear and convectiv	ve E	96	Ri Aver
instability condition	S	94 92	
develop at 85km		00 (k ¹¹)	
Instabilities in		Altitu 98	
simulations do not		84 82	
and orientations of	162	80 21	22 2 Time (I
instabilities observe	d in	Rifrom	lidar wi
AMTM		trom . suggests	21-23 U1 s horizon
24-25 UT:			4
Propagation			105
GW observed in AM	TM v	vith	100 95
same parameters as	21 L	JT	It [<i>km</i>]
Widening critical lay	ver re	gion	× 85
reduces amplitude of Similarity to HECM	over	time	75
21 UT suggests cont	inuo	us	70
wave source from 2	1-25	UT	As in
			critical
Conclusions	5		
 Complex IGW 	env	vironr	nent
transient, pror	bada	ating	GW
 Intermittent H 	FG		nt si
 IGW backgroup 	nd	create	$\sim r \Delta$
tunneling and		ticall	
cumenny, and		ucari	CVCI

in lidar and AMTM

 Observed instabilities in AMTM coincide with shear and convective instability conditions in Ri profiles, but GW is likely obscured by, rather than responsible for, instabilities in AMTM domain while propagation continues

gation through Observed Profiles

 $\omega_{i0} = 0.016 s^{-1}$ imes at 19 UT showing propagation (green), evanescence (yellow), and $\omega_{
m i}$ < ed); θ' fields from simulation showing no GW transmission through critical level; and AMTM intensity.

GW momentum flux indicates tunneling and reflection at evanescent layer.

Shear Instabilities below CL

 $\omega_{i0} = 0.016s^{-1}$

or 22 UT. θ' fields from simulation indicate critical level below 90km, while shows potential for shear instability formation at later times with larger ial ω_i . Obscured GW in AMTM indicates instability formation.

nds and temperatures, showing convective and shear instability tendency . That convective Ri occurs at different altitudes in East and North beams tally localized instability conditions that do not cover entire AMTM domain.

24 UT

Figure 1 for 24 UT. θ' fields from simulation indicate propagation up to level above OH layer where wave is visible in AMTM. Wave characteristics in AMTM match observations from 21 UT.

provides unique opportunity to observe events in the MLT

imultaneously observed by lidar and AMTM gions of reflection, propagation, evanescence/ filtering that account for amplitude variations

