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Jenny Jump Site on the night of September 23, 2013. direction. As can be seen many of the horizontal wavelengths map onto a small band of vertical

wavelengths between 2 and 4 km. Winds during this time were generally going SSE.

The figures show decaying wind speed above 15 km, and a strong
shear component up to 15 km.
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The photo left is the site of the
lidar system outside the main
UACNJ building. The system
has been relocated to the Jeffer
Observatory, and 1s being fiber
coupled to a 48 fully steerable
optical telescope.

patterns of upward (red) and downward
(green) phase lines, indicative of downward
and upward propagating gravity waves,
respectively. Downward phase structure has
vertical wavelengths of 2.5-3.5 km and
observed periods of 45-65 min.
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The figure above, also from NCEP data, shows the B-V frequency changing with time and altitude. The
right subplot timeframe was over a time when observations with lidar were taken at Jenny Jump, up to the
highest altitude (pressure level) available in the data set from NCEP. The left subplot is a cross section of
the contour plot at 9/23 14:00, showing a typical BV frequency profile with altitude. Note the large
changes around 1, 3, and 10 km, and the areas of stability above and immediately below the tropopause.
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Conclusions

Horizontal Wavelength (km)

The highest RPSD for
cach direction (shown
in white line) 1s then
used to compute the
vertical wavelength for
different wind speeds
and directions. To the
figure right, areas 1n
black are when the
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Comparing the lidar data with the mountain wave model data, we see the following:

1) There do not seem to be any stationary gravity waves. That 1s, the waves we observe 1n the lidar
data show phase progression. We speculate that stationary mountain waves are being generated at lower
altitudes and are then breaking and forcing secondary waves [of comparable vertical wavelength], which are
then observed above 10 km.

2) Above 10 km and below ~17 km, the observed, quasi-monochromatic gravity waves match the
model predictions, 1n regards to the measured vertical wavelengths. This lends support to the speculation of
secondary wave forcing presented above. We note that the BV frequency and the winds are relatively steady
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As with the above panel, a horizontal cross section is taken from from 0 to 180 degrees,

. ; waves become : [in regards to both altitude and temporal variation] in this altitude regime.
the P .ectrum 1s the same modulo 180. The.ﬁgl.lre shows, as expectefd for pargllel ndges, absorbing (it’s 3) Above ~17 km, the wave field seems to become incoherent. This 1s likely due to the rapidly
a minimum set of wavelengths when the wind is orthogonal to the ridge and increases as amplitude component o o G = m decreasing winds as seen in the wind profiles. There is likely reflection of the waves above 17-km, resulting in

Wind Direction (Degrees)
[Where wind is coming from, 0 =N, 90 = E, 180 = S, 270 = W]

a 1/cos(®), becoming unbounded. (See figure immediately right for Vertical Spectrum)

becomes imaginary). the observed downward propagating gravity waves.
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