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Measurements of phase differences between temperature and
vertical wind perturbations associated with gravity waves in the

|
ABSTRACT: mesopause region
The study of the phasing of atmospheric gravity wave (AGW) temperature and
vertical wind perturbations (T’ and w’) in the mesopause region as illustrated by Anthony Caton, Fabio Vargas, Gary Swenson
Swenson et al. (2003) used correlative measurements of temperature and vertical
wind from Na lidar and airglow brightness (OH and O,). The data shows the phase ‘ ‘ ‘
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