Low-altitude ion heating with downflowing and upflowing ions

Yangyang Shen¹, David J Knudsen¹, Johnathan K Burchill¹, Andrew Howarth¹, Andrew Yau¹, Gordon James¹, David M Miles², Leroy Cogger¹ .Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada 2. Department of Physics, University of Alberta, Edmonton, AB, Canada

- assume that frictional heating or Joule heating dominates.
- exists except sporadic sounding rocket observations.

2. Methodology

ion temperature are derived from 100-image-per-second lowenergy 2-D ion distribution functions [Knudsen et al. 2015].

et al. 2016].

- 0-100 eV/q.
- electric fields (10 Hz –18 MHz dynamic range available).

3. Results

ion energization process and its relation with field-aligned flows and FACs. 2. Transverse ion heating can be intense (up to 4.5 eV), very narrow (~2 km across B), is more likely in the downward current region, and is associated with BBELF waves between 330-730 km altitudes. This suggests that significant wave-ion heating should be included in relevant models at low altitudes.

3. The minimum altitude of strong wave-ion heating (~350 km) is lower than reported in the literature [*Whalen et al. 1978*]. 4. Contrary to what would be expected from mirror-force acceleration of heated ions, the majority of these heating events (17 out of 24) are associated with core ion downflow rather than upflow. Unknown processes are involved.

5. References

[1] Knudsen, D., J. Burchill, T. Cameron, G. Enno, A. Howarth, and A. Yau (2015), The CASSIOPE/e-POP Suprathermal Electron Imager (SEI), Space Science Reviews, 189(1-4), 65-78, doi:10.1007/ s11214-015-0151-1 [2] Shen, Y., D. Knudsen, J. Burchill, A. Howarth, A. Yau, R. Redmon, D. Miles, R. Varney, and M.

Nicolls(2016), Strong ambipolar-driven ion upflow within the cleft ion fountain during low geomagnetic activity, J. Geophys. Res. Space Physics, 121, 6950–6969, doi:10.1002/2016JA022532. [3] Whalen, B. A., Bernstein, W. and Daly, P. W. (1978), Low altitude acceleration of ionospheric ions. Geophys. Res. Lett., 5: 55–58. doi:10.1029/GL005i001p00055.

6.	Ac	kno	wle	edg	gem	lent
----	----	-----	-----	-----	-----	------

This work is supported by a Eyes High Doctoral Recruitment Scholarship from University of Calgary and the Natural Sciences and Engineering Council of Canada. e-POP is funded by the Canadian Space Agency. We thank Gareth Perry for assistance with RRI data and helpful discussion.

Email: *yangyang.shen@ucalgary.ca* Poster Number : MITC-08

Гime	Ion flow	Wave?	Aurora?	Altitudes(km)	Кр
23111	down	BBELF	FAI	412	5+
5543	up and down	BBELF		351, 351, 351	3 to 5+
2140	down(up)			358	2-
0916	up			357, 355	0+
25712	down	BBELF	FAI	400,400, 440	4+
4312	down	BBELF	FAI	434	3
.0412	down	BBELF	FAI	441	2+
5112	down	BBELF	FAI	469	2+
1000	down	BBELF	FAI	461, 469, 483	2-
4119	down		FAI	708	5+
2010	down and up	BBELF	FAI	413	5
4712	up	BBELF	FAI	335, 339	2-
2218	up	BBELF		443.8	3
2545	down	BBELF		730	3-
5647	up and down		FAI	386	6
30500	down			423	5-
2600	up and down		FAI	360	7