Magnetospheric signatures of dayside aurora on closed field lines and a possible solar wind driver

Boyi Wang1, Toshi Nishimura1, Desheng Han2, Jacob Bortnik1, Wen Li1, Larry Lyons1, Vassilis Angelopoulos3, Yusuke Ebihara4

- 1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
- 2. Polar Research Institute of China, Shanghai, China
- 3. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- 4. Research Institute for Sustainable Humanosphere, Kyoto, Japan

Variation of dayside aurora: Foreshock/shock driven

Hot Flow Anomaly (HFA) at ~1135 UT

 \rightarrow Magnetopause deformation \rightarrow Dayside auroral brightening

Space imaging has resolution limitation; Ground based imaging can identify aurora types and evolution.

Similar brightenings also occur during interplanetary shocks. [e.g., Zhou et al., 2009]

Variation of dayside aurora: Throat Aurora

[Han et al., 2016]

Throat aurora: transient discrete auroral brightening, with roughly north-south orientation, extending equatorward of discrete auroral oval

With DMSP conjunctions;

- Corresponding to low energy electron precipitation
- Reduction of plasma sheet electrons
 Indicating penetration of magnetosheath
 population

IMF southward turning and Flux Transfer Events

FTE evolution after the reconnection with southward IMF [*Fasel et al.,* 1993]. FTE has a poleward motion, which are considered to be associated with PMAFs.

Motivation

Questions

What are magnetospheric signatures of throat aurora and foreshock-driven aurora? What drive such localized and transient feature near the dayside magnetopause? To address those, we find conjunction events between THEMIS and South Pole all sky-imager.

Advantages: TH-D and E had a conjunction per a day in 2008 and 2009. South Pole is under dayside diffuse aurora in nominal conditions.

Instruments 2009-08-20/16-18 Final orbits: Antarctic THEMIS-P1 (B) ж Peninsula THEMIS-P2 (C) Y-GSM Amundsen-Scott +90* 90°+ 70° Station THEMIS-P3 (D) West 10 Antarctica East Antarctica THEMIS-P4 (E) 20 THEMIS-P5 (A) 20 10 0 -10 GSM-X South Pole Station: **THEMIS D/E satellites:**

South Pole Station: Located at Geophysical south pole or 74.3° S MLAT.

Having possibilities to be closed to magnetopause in the dayside region.

Diffuse Aurora brightening: Ground Observation

THEMIS-P4 (E)

THEMIS-P5 (A)

Dayside diffuse aurora suddenly brightened.

A localized region of brightening propagated from prenoon to post-noon toward THEMIS footprints.

Diffuse Aurora brightening: Solar wind/foreshock Observation THEMIS B THEMIS C

TH-B/C: Foreshock ions during IMF discontinuity

Diffuse Aurora brightening: Magnetopause crossing

Aurora: Duskward propagation toward TH-A footprint TH-A: Weak flow enhancement and then magnetopause crossing

Suggesting that a localized magnetopause compression propagated from pre-noon to postnoon and induced diffuse auroral brightening.

Diffuse Aurora brightening: Magnetosphere Observation

TH-D: ULF oscillations (consistent with *Hartinger et al.* [2013]), chorus intensification TH-E: Much smaller than at TH-D – Not global but localized disturbance

Discussion (1)

Foreshock transients play a role in driving sunward magnetosheath flows and magnetopause motion [*Archer et al.,* 2012; 2014].

Indicating localized magnetosphere compression by foreshock effects and magnetosheath particle penetration to dayside outer magnetosphere for driving diffuse auroral brightening.

Throat Aurora: Imager Observation

Two groups of throat aurora are identified during 1742 UT - 1754 UT and 1804 UT - 1817 UT

Throat Aurora: Solar wind/Magnetosheath Observation

Throat Aurora: Magnetosphere Observation (1)

THD:

Enhancement of sunward flow; Flow shears.

Low energy particles (both ions and electrons) enhancement. Associated with isotropic pitch angles.

Indicating these low energy ions may be from magnetosheath.

Throat Aurora: Magnetosphere Observation (2)

No enhancements of flows and low energy particles are observed by THE. Indicating these signatures are localized.

Summary

Using a THEMIS-imager conjunction event, we investigated auroral responses on dayside closed field lines to foreshock phenomena.

Diffuse auroral brightening

- THEMIS in the solar wind detected foreshock ions during small IMF Bz.
- THEMIS in the dayside magnetosphere detected ULF and chorus waves and lowenergy particle enhancements.
- Localized regions of diffuse aurora brightened and propagated azimuthally. Indicating localized magnetosphere compression by foreshock effects and magnetosheath particle penetration to dayside outer magnetosphere for driving diffuse auroral brightening.

Throat aurora

- THEMIS in the dayside magnetosphere detected a flow enhancement, lowenergy particle flux enhancement.
- Low-energy particle flux can be magnetosheath particle penetration or magnetospheric particle acceleration.
- Tilted discrete auroral arc brightened and penetrated to closed field line regions.

Indicating transient and localized reconnection (FTE) at magnetopause, magnetosheath particle penetration, and flow burst as a possible magnetospheric counterpart of throat aurora.

Future work

Using a THEMIS-imager conjunction event, we investigated auroral responses on dayside closed field lines to solar wind variations (diffuse auroral brightening and throat aurora). In the future, we will:

- Continue survey about the aurora response to foreshock phenomena
 - Search all the events in 2009 to identify what are the conditions that drive diffuse aurora brightening by foreshock.
- Continue event survey about throat aurora
 - Search all the events in 2009
 - Identify how common IMF southward turning are associated with throat aurora.