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INntfroduction

Coefficients best fit

Given this information -- under the reasonable assumption of o
negligible change in velocity -- we can directly relate the mass
loss to tThe meteor luminosity and RCS.

Experimental Design

We collected meteor data using PFISR, operating at 449.3MHz and
an electron multiplying charge coupled device camera on three

We present a method to characterize undetermined coefficients
used in meteoroid mass estimation, based on data collected on
March 30 2014. From the radar and optical data we can
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detected, we relate our measured signals to the meteoroid mass observations the camera and radar were pointed at 75 deg Optical: g ~ p27
loss and then to each other, thus extrapolating the best fit elevation and 15 deg azimuth. PFISR was set up using two different

among the exisiing model for determine which Ionizafion pulses: a wide beam (~5 deg) and a narrow beam (~1 deg). The p
coefficient (B) and luminosity coefficient (1) parameter to use EMCCD camera had approximately ~9deg FOV. Radar: d_T: _ /"Z”

Observing a common event implies that the mass loss computed
with the two different equations must be the same, allowing us to
compare directly the two coefficients of Interest from
experimental results with real data. This leads to

Methodolog

An automated detection algorithm based on the Hough
transform has been developed to discover meteors in the optical
INstruments. Once an event is iIdentified, we confirm ifs existence
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- or differential ablatfion. A
| _more in-depth analysis of the
Radar alongside a numerical
simulation seems o suggest
the latter
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Existing models for the ionization probability and luminosity efficiency coefficients. The | <
resulting mass computation can have up to one order of magnitude of difference. Hough fransform Detfected strike T Seconds e S 2014 112020 UTC)

Conclusion and Future Work
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This research was possible thanks fo the NSF career award AGS- firstly — according to our observations — Jones1997 and Hill 2005
1056042. Any opinions, finding, conclusions, or recommendations - are the best pair of coefficients the community should use in
expressed in this material are those of the authors and do not Objects 49 9> 136 100 order to obtain consistent measurements across different
necessarily reflect those of the National Science Foundation. We Irue positive 23 - o 20 36 instruments for mass estimation. Secondly we observed events
would like to thank the Semeter Space lab of Boston University for that may support the existence of meteoroid differential
lending us the camera equipment, Dr. Michael Nicolls and the False Positive ° ! 2 19:64 ablation. Nonetheless the incongruity of some data require
AMISR team at the Poker Flat Research Institute for their help False Negative N/A N/A N/A N/A further inquiry to characterize them. Future experiment of this sort

during our stay. should thus incorporate additional instruments (e.g. camera filter,

idar), to resolve probable irregularity in the collected data.

Common Events 13 11 N/A N/A



