

Longitudinal structure in electron density at mid-latitudes: upwardpropagating tidal effects Hui Wang(h.wang@whu.edu.cn), Kedeng Zhang Dept. of Space Physics, School of Electronic Information, Wuhan University, China

Abstract

> This work studies the upward-propagating migrating and non-migrating tidal effects from the lower atmosphere on the longitudinal variation of electron density (ΔNe) in both the E and F regions at midlatitudes during the 2002 March equinox. A total of 12 runs are conducted using the Thermosphere Ionosphere Electrodynamic General Circulation. The ΔNe at altitudes above 200 km is affected by upward-propagating tides, with maximum values attained around 300 km. Migrating tides result in reduced longitudinal differences in the Ne over North America and in the Southern Hemisphere, while non-migrating tides induce a wave-4 pattern in both hemispheres. The non-migrating effect is weaker than the migrating effect after penetrating into the F region. The neutral composition (i.e., ratio of atom oxygen to molecular nitrogen) is dominant in regulating the ΔNe in both the migrating (accounting for approximately 64%) and non-migrating (about 60%) tidal penetration processes. The ΔNe caused by the tidal meridional wind (about 30%) under both the migrating and non-migrating tidal conditions, except in the Southern Hemisphere under migrating tidal input. This work contributes to our understanding of the mechanisms for the longitudinal modulation of the ΔNe at midlatitudes.

Motivation

 \succ Whether or not the lower atmosphere is closely coupled to the mid-

16 ¹

- latitudinal ionosphere is still not well understood.
- > What is the role of the lower atmosphere tides in the E and F regions?
- \succ How do lower atmosphere tides affect the low and upper ionosphere?

Model

\succ TIEGCM:

- Size: 2.5 °× 2.5 °

- ➤ case:
- without tides (migrating and non-
- hemispheric power=39 GW
- cross polar cap potential=60kV • $F107=200 \text{ w/m}^2/\text{Hz}$
- migrating) with migrating (non-migrating) tides
 - without tides under zero neutral

CHAMP observations

≻A wave-2 structure: one peak and trough over NA $(180^{\circ}W-0^{\circ})$, another peak and trough over the Europe-Asia sector($0^{\circ}-180^{\circ}E$) in the

Southern Hemisphere;

longitudinal patterns in

Northern

are well reproduced;

Southern

and

Hemispheres

hemispheric and

local time asymmetries

are also well reproduced

by the TIEGCM model.

Figure 1. Longitudinal and magnetic local time variations of the residual electron density(ΔNe) observed by CHAMP

TIEGCM simulations

Figure 2. Longitudinal and magnetic local time variations of the residual electron density(ΔNe) simulated by TIEGCM

Northern Hemisphere; A wave-1 structure (one peak and trough) in the

lagnetic local

16 14

12

Figure 5. The tidal wind effects in ΔNe . (top: zonal wind; middle: meridional wind; bottom: total wind)

> The meridional wind played stronger roles than the zonal wind in the Northern Hemisphere, while weaker in the Southern Hemisphere. \geq The total wind effects resembled more to the meridional wind in the northern hemisphere and zonal wind in southern hemisphere.

Non-wind tidal effects

-90 -60 -30 0 30 60 90 120 150 180 Geographic longitude [° Geographic Ionaitude I°N Figure 7. the same as figure 5, but for non-migrating tidal.

 \rightarrow There existed a wave-1 structure of ΔNe induced by the zonal wind with phase reversed in the Northern and Southern Hemispheres, and a wave-4 and wave-2 structure of ΔNe due to meridional wind which was quite similar to the total wind effects.

Tidal non-wind effects

Non-migrating tidal effects

• Tidal wind effects

Summary

 \bullet The ΔNe at altitudes above 200 km are affected by upward-propagating tides.

 \bullet Migrating tides result in reduced longitudinal differences in the ΔNe over North America and in the Southern Hemisphere. Non-migrating tides result in a wave-4 structure of the ΔNe in both hemispheres, but with weaker amplitudes as compared to migrating tides.

 \bullet The neutral composition changes play dominant roles in regulating the ΔNe under both migrating and non-migrating tidal conditions.

• The ΔNe driven by tidal meridional wind is stronger than tidal zonal wind, except for the southern hemisphere under migrating tidal input.

Reference: Wang H, Zhang K. Longitudinal structure in electron density at mid-latitudes: upward-propagating tidal effects[J]. Earth, Planets and Space, 2017, 69(1): 11.