

implications for bias in MSIS oxygen density specification

P. Joshi¹, L. Waldrop¹, C. Brum², M. Sulzer², N. Aponte², S. Gonzalez², P. Santos² and E. Robles² 1: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA; 2: Arecibo Observatory, Puerto Rico

INTRODUCTION

The objectives of this work are:

To derive the notorious "Burnside" factor scaling of the O-O+ charge exchange cross section, Q(O-O+), from momentum balance analysis in order to improve calculations of plasma drift speeds, diffusion coefficients, and electron density distributions.

To investigate potential bias in the model specification of O density, [O], used in the analysis.

NEUTRAL WINDS

Ion-momentum equation $Un_m = -(v_{ap} + v_d)sec(I)$ **O⁺ - O diffusion velocity** $v_d = D_a \frac{\mathrm{T}_{\mathrm{p}}}{\mathrm{T}_{\mathrm{r}}} sin(I) \left(\frac{1}{N_e} \frac{dN_e}{dz} + \frac{1}{\mathrm{T}_{\mathrm{p}}} \frac{d\mathrm{T}_{\mathrm{p}}}{dz} + \frac{0.36}{\mathrm{T}_{\mathrm{r}}} \frac{d\mathrm{T}_{\mathrm{r}}}{dz} + \frac{1}{H_p} \right)$

BURNSIDE FACTOR

ION-MOMENTUM BALANCE CALCULATIONS

Ion-momentum equation with Un_{FPI} from neutral wind model of [*Brum et al*, 2012] $Un_{FPI} = -(v_{ap} + v_d)sec(I)$

Burnside factor (F)

OXYGEN DENSITY

Ion-momentum equation with Un_{FPI} from neutral wind model of [*Brum et al*, 2012] $Un_{FPI} = -(v_{ap} + v_d)sec(I)$ Neutral oxygen density [O]

UNCERTAINTIES

Altitude gradients in the plasma drift velocity which are currently neglected due to lack of height-resolved data.

Measurement uncertainties in the ISR data, which are not considered.

Assumption of negligible vertical wind gradients in the FPI wind model of *Brum et al* [2012].

What is the unique advantage of this work?

Use of unprecedented 18-year baseline of combined incoherent scatter radar and neutral wind data acquired at Arecibo Observatory.

PARAMETER SPECIFICATION

Ionospheric state parameters:

Electron density $[N_e]$, ion densities $[H^+]$ and, $[O^+]$, ion temperature T_i , electron temperature T_e , plasma temperature $T_p = 0.5(T_i + T_e)$ and, antiparallel plasma drift velocity v_{ap} measured by the Arecibo ISR from 1987-2004.

Co-located neutral densities [H], [O], $[O_2]$, $[N_2]$ and temperatures T_n and, average ion-neutral temperature $T_r = 0.5(T_i + T_n)$.

Thermospheric winds:

 $Un_m = U_e sin(D) + U_n cos(D)$ where, Un_m is the neutral wind along the magnetic meridian, D is magnetic declination, U_{ρ} and U_{η} are zonal and meridional winds from the neutral wind model of Brum et al [2012] which is based on the 630 nm redline emission measured by Arecibo Fabry-Perot interferometer (FPI).

Charge exchange cross section:

 $Q'_{O^+-O} = 3 \times 10^{-11} . \sqrt{T_r} . (1 - 0.135 . log(T_r/10^3))^2$ from Pesnell et al [1993]

METHODOLOGY **STEP 1:**

For each of the 39,512 individual ISR measurements available, calculate the peak 630 nm emission altitude (h_{peak})using *Link and Cogger* [1988].

STEP 2:

Find the values of needed thermospheric and ionospheric parameters at n_{peak}.

STEP 3:

Use the O-O+ momentum balance equation to derive neutral wind Unm, Burnside factor F, and neutral O density for each measurement.

STEP 4:

Average the observations over 10 minutes of local time and calculate errors in terms of both propagated measurement uncertainty (via *Reddy et al* [1994]) and standard deviation of the binned data.

ASSESS SEASONAL DEPENDENCE:

Bin data by season, defined as +/- 45 days from March equinox (21 March), June solstice (21 June), September equinox (21 September) and, December solstice (21 December), respectively.

ASSESS SOLAR CYCLE DEPENDENCE:

Bin data by solar activity, defined in sfu as: 90< F10.7 <120, 120< F10.7 <150, 150< F10.7 <180 and, 180< F10.7 <210.

Contact: ppjoshi2@illinois.edu

