

Preston Hooser, Eric Ashby, Kenneth Zia, Ludger Scherliess, Mike Taylor, and the OPAL Team Center for Atmospheric and Space Sciences, Physics Department and ,Space Dynamics Laboratory, Utah State University.

Overview:

The Optical Profiling of the Atmospheric Limb (OPAL) mission is an NSF CubeSat which will measure the temperature in the lower thermosphere between 90 and 140 km via a tangential line-of-sight. Its instrument, a multi-slit imaging spectrometer, will allow the inference of temperatures in the transition region from the mesopause into the thermosphere and ionosphere.

Airglow: An Introduction

Airglow is a natural phenomena generated by excited gasses in the upper atmosphere. It originates in several different emission layers, being generated from various species. OPAL will study the O_2 A-band, to infer temperatures of the lower thermosphere. This region is highlighted by the yellow grid in the figure below.

The A-band lies just outside of visible, centered around 762 nm it consists of two bands and a series of rotational lines which give it fine structure. This structure is characteristic of the temperature of the 0₂ which emits it, allowing OPAL to make remote measurements of this transition region

Temperature Dependent Spectra

OPAL will measure the 0, A-band to determine neutral temperature. The strength of each rotational mode of the electronic transition is highly temperature dependent. By comparing a measured spectrum to the modeled A-band the atmospheric temperature can be determined.

of the spectrum is smoothed by instrument resolution. However, the spectrum shape is still characteristic of temperature..

Thermospheric Temperature Analysis Methods for the OPAL Mission

Recognizing Emission Curves:

of full spectra

This figure shows the success of the temperature recognition software, having error of <1.5 K..

Inversion of Line of Sight measurements:

Stephanie Whalen Sullivan, "Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform," Master Thesis, Utah State University (2013).