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Motivation

The Alaskan Network is comprised of four Allsky implemented Fabry-Perot Interfer-
ometers, called Scanning Doppler Imagers (SDIs). Each SDI measures 115 tempo-
rally simultaneous spatially independent spectra of atomic oxygen via atmospheric
nightglow and auroral emission centered about 6300Å, with a spectral resolution of
±0.01pm[1, 2, 3]. The SDI converts these raw measurements into processed line of
sight (LOS) observations with a corresponding resolution of ±5ms . When all Alaskan
instruments are observed together they have spatial overlap.

Figure 1: Thermospheric wind reconstruction over

Alaska on Jan 31st, 2016 during high auroral activity.

Orange arrows are direct trigonometric reconstruction

while white arrows are basis function fitting method.

Yellow arrows are superDARN measured ion veloci-

ties dragging nuetral winds and introducing small scale

structure.

On the night of January 31st, 2016 there were three SDIs recording data, totaling 345
near temporally simultaneous measurements over approximately one square megame-
ter of Alaska with a cadence of about 5min per measurement set. Two other wind
inference methods have been applied on data for this night (figure 1), and ion convec-
tion (superDARN) data is available as well.
It is our goal to provide a new method of inferring wind by means of geophysical
inversion that captures large scale features in agreement with existing methods and
also additionally globally resolves small scale features that are yet to be studied in
detail in the thermosphere.

The Forward Model

The Alaskan SDIs record temporally nearly-simultaneous and geographically over-
lapping LOS data. Geometrically a LOS observation, di, is the projection of the
subtended wind vector field ~ui components onto the look direction ~ri in which the
observation is made.

di = ~ui · ~ri
ri

=
3∑
j=1

uijxj

ri
(1)

di = uix sin θi sinφi + uiy sin θi cosφi + uiz cos θi (2)
With θi being the angle from zentih and φi is the azimuthal angle clockwise from North
for a given observation. A linearized design matrix G is constructed that performs
the geometrical transformation for each observation described by equation 1. G is
made sparse such that an entire wind field ~u can act on a observation basis in G
and perform the equivalent operation described in equation 1[4]. G will thus have
dimensions {M,3N2} for a system with M observations reconstructed on a grid of size
{N,N,3}. To accomplish this we vectorize the three dimensional wind field such that:

Gi = 〈. . . sin θi sinφi . . . sin θi cosφi . . . cos θi . . . 〉

~u =
〈
u1x, ..., uNx

, u1y, ..., uNy
, ..., u1z, ..., uNz

〉T
(3)

Where Gi contains the geometrical components necessary to satisfy equation 1 at the
location corresponding to the grid element or is zero elsewhere. We now have the
forward model:

dα = Gβ
αuβ (4)

The contraction described in equation 4 is the equation of an observation by the inner
product of the two observation vectors in equations 3.

Solid Angle Correction

Equation 4 assumes di is observed (mathematically) from a single vector in a vector
field, over an infinitesimal solid angle. Our SDI measures the average wind field over
a defined solid angle dΩ. A correction to equation 4 is needed.
To correct this, in practice, an equiareal Gaussian solid angle projection is assumed.
The design matrix is then corrected by spatially convolving an appropriately sized
Gaussian kernel κ with each direction (zonal,meridional,vertical) of a design matrix
row Gi reshaped to {N,N}:

Gcorrected = κ(x, y) ? G(x, y) =∫∫
<2
κ(τ1, τ2) ·G(x− τ1, y − τ2)dτ1dτ2 (5)

The convolution in equation 5 drops the condition number of G stabilizing the inverse
problem[5]. A fully independent treatment of solid angle per element can be applied
using conic sections and the phenomena altitude of 250km. This paper uses equation
5 for all computations.

Inverse Theory
The projection of a vector field to a LOS measurement is a surjective map-
ping IR3 → IR and thus an inverse map is injective and not unique. An
infinite number of possible solutions exist given the injective mapping and
density of the reals.

Geophysical constraints and/or regularizations must be applied in
order to successfully map this inverse problem.

For thermospheric winds a regularized solution is sought by utilization of a
generalized Tikhonov set of equations:a

~u∗ = (Λ)−1GTC−1
d
~d (6)

Λζ
η = Gβ

ηC
−1
d

ι

βG
ζ
ι + Ψξ

ηΨ
ζ
ξ (7)

~u = min
~u∗

[
||G~u∗ − ~d||2 + ||Ψ~u∗||2

]
(8)

In equation 7 C−1
d is the inverse of the data covariance and Ψ is the reg-

ularization term. Ψ Usually takes the form of Ψγ
ε = αδγε adding a zeroth

order offset to the inversion in order to stabilize the proceeding inversion.
The effect of this is to smooth the eigenspace of the design matrix enough
to converge[5].

aA working knowledge of Tikhonov Regularization is assumed. See [5, 6] for derivation

Higher Order Regularization

When considering small scale reconstruction of thermospheric wind fields
a zeroth order Tikhonov reconstruction alone over-smooths the eigenspace,
removing small scale variance[5]. A higher order Ψ is investigated to add
correction the zeroth order term:

Ψγ
ε = βGδ

εδ
γ
δ + αδγδ (9)
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)
δξδ
(
βGδ

ξ + α
)
δζδ (10)

The hyper-parameters α, β act on Ψ to allow the zeroth and higher order
terms to be tuned independently. The addition of the higher order term
is the contraction Gδ

εδ
γ
δ which are interpreted as the strength of observa-

tions made from wind field elements γ. This gives preference in recon-
struction based on how many data measurements constrain a given wind
field, allowing zeroth order smoothing to prevail where there are not many
measurements and the measurement reconstruction to prevail otherwise.

Synthetic Data Results

Synthetic data was produced
that included a hyperbolic tan-
gentially variable wind field with
a normally distributed added
noise where one sigma of devia-
tion was less than or equal to 25%
of the maximum wind speed. A
shear was added meridionally in
the center of the wind field (Fig-
ure 2).
To validate the performance of
the algorithm an inner product
metric was used:

M = cos θ =
~u∗ · ~usynth
|~u∗|| ~usynth|

(11)
Figure 2: Red arrows are the generated synthetic winds

and orange arrows are the reconstructed winds. A metric

agreement of over 95% is achieved.

M has a domainM ∈ [−1, 1], where the most optimal reconstruction is the
maximal value of M achieved.
After brute searching the metric (equation 11) maximized at 95% agreement
for an optimal α, β. Visually (Figure 2) very strong agreement was observed
in the data, with an over-smoothed region about the generated shear line.
Sheared sinusoidal, constant, and Gaussian varying wind fields tested at
approximately 95% agreement as well.

Real Data Results

Figure 3: Model reconstruction for same time and location as figure
1. Color of vectors represents vertical wind speed.

Real data was taken from the
Alaskan SDI network for the
night of January 31st, 2016, utiliz-
ing data from Poker Flat, Toolik
Field Station, and Kaktovik sta-
tions. This resulted in 345 inde-
pendent LOS measurements with
a varying temporal cadence of
about 2 minutes. Data covariance
was measured and reported by
each SDI, along with azimuthal
and zenith angles, for each di ob-
served. Without in situ verifica-
tion via rocket missions, the valid-
ity of the wind reconstruction re-
lies on other techniques that have
previous in situ validation.

For this, we look look at the work of Conde et al (Figure 1) using polynomial basis fit-
ting and direct trigonometric calculation. Large scale structure are observed in general
agreement (figure 3). Reconstructions were determined to be physically meaningful. Small
scale features are present that agree with direct trigonometric calculations of data (orange
arrows, figure 1). Additional observations of small scale phenomena are present, but need
more quantitative analysis before determining validity.

Discussion

The reconstruction of synthetic winds produced objectively and subjectively good results.
For synthetic data the evaluation metric measured over 95% agreement in reconstruction,
providing strong evidence that the methodology is valid for this type of application.
In practice real reconstructions are difficult to measure objectively. Without strong regu-
larization, a reconstructed wind field element where no data was collected can reconstruct
in any manner equally as valid as any other. The overall reconstruction attempts to op-
timize any differences between elements and may indeed find a non-physical artifact valid
in order to optimally regularize the known data.
For a heavily regularized region, a typical artifact is a vorticular region absent of any present
physical driving mechanism. This artifacting is due to regularization imposed limitations
of the model during reconstruction. High curvature elements are not permitted but, being
unconstrained by the data and emphasizing smoothness, the zeroth order regularization
term often will seek to minimize the divergence of the anomaly and thus produce curling
vector fields locally.
Strong physical regularization is needed to constrain the inverse algorithm appropriately.
Methods including optimizing variations on the Burnside Condition[7], continuity, and
physically reasonable domain constraints have been attempted with acute success.
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