OPAL CubeSatellite Flight and Line of Sight Integration Modeling
Kenneth Zia, Preston Hooser, Eric Ashby, Ludger Scherliess, Michael Taylor, and the OPAL team Center for Atmospheric and Space Sciences \& Department of Physics, Utah State University Utah State University, Logan, UT
Phone: (435) 797-2857, E-mail:kennethzia@gmail.com

Mission Overview

Optical Profiling of the Atmospheric Limb (OPAL) 3U (10 x $10 \times$ 30 cm) CubeSat measuring Thermosphere temperatures [1] OPAL will observe the temperature from $90-140 \mathrm{~km}$ altitude through observing day-time emissions of $\mathrm{O}_{2} \mathrm{~A}$-band ($\sim 760 \mathrm{~nm}$) emissions.

Plot of temperature vs. altitude with
labeled atmospheric layers [2].

2-D map of the OPAL model with Yellow representing sunlit regions, and red in the umbra regions.
View of the tangential nature of the line of sight.

Flight Modeling

Using Matlab and Analysis Graphics Inc. (AGI) Systems Took Kit (STK), we mode the OPAL position and velocity. The expected launch for OPAL is mid-2017 from the International Space Station (ISS), and is thus modeled with an orbit $\sim 400 \mathrm{~km}$ altitude. The OPAL instrument's field of view (FOV): width 11 deg height 2.5°
of Sight

OPAL measures the light emissions along its line of sight (LOS), therefore modeling of LOS is important.

-Express position (R) and velocity (V) of OPAL cubesat in Cartesian coordinates

-Calculate a vector K perpendicular to both R and V (i.e. take cross product of R and V)
-Use the Rodrigues' Rotation Formula to obtain a vector in the line of sight.
-Step along the look direction in 1 km steps.

$V_{\text {Rotation }}=V \cos \theta+(k \times V) \sin \theta+k(k \cdot V)(1-\cos \theta)$

Derivation of the Rodrigues' Rotation Formula. (with k being the vector perpendicular to v (rot) and theta as the angle rotated through).

Visual interpretation of the use of the $\mathrm{Rodrigues'}$ rotation formula. With $\mathrm{Z}=\mathrm{V}$,

Model of the OPAL (3D-modeled with the ISS) orbit (blue), FOV (yellow), and light blue line denoting LOS.

Integration

There are many contributing factors to the volume emission rate of the A-band. It varies with the intensity of solar radiation, densities of several atmospheric constituents, and temperature at a specific altitude. This emission is summed along the LOS to give a model of OPAL output to the ground.

References and Acknowledgements

[1] Belongie, Serge. "Rodrigues Rotation Formula. From MathworldA Woifram Web

 Resource, createdby Eric WWeisstein. http://mathworld.wolfram.com/RodriguesRotationFormula.html [2] Burke, W. J., C. S. Lin, M. P. Hagan, C. Y. Huang, D. R. Weimer, J. O. Wise, L. C. Gentile, and
dissipative
thermospheric system, J. Geophys. Res. 114, A06306
doi: 10.1029/2008JA013848.
[3] Christensen, A. B., J.-H. Yee, R. L. Bishop, S. A. Budzien, J. H. Hecht, G. Siviee and A. W. Stephan (2012), Observations of molecular oxygen Atmospheric band emission in the thermosphere using the near infrared spectrometer on the ISS/RAID experiment, J. Geophys. Res., 117, A04315, doi:10.1029/2011JA016838.
[4] National Earth Science Teachers Association. (2012) Windows to the universe [Online]. Available: http://www.windows2universe.org/earth/Atmosphere/layers activity print.htmI
Thermosphere from a Cubptical Sensors for Mapping Temperature and Winds
Members involved are: a student team at Utah State University, University of Maryland Members invoived are: a student team at Utah State University, University of Maryiand
Eastern Shore and Dixie State University, supported by professional scientists and engineers from the Space Dynamics Laboratory, Hawk Institute and NASA is executing the OPAL mission.

