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Abstract

The main goal of this work is to evaluate the
precision of the estimation of convection pat-
terns measured with our coherent radar sys-
tem. We are also exploring the relation be-
tween active events and the dispersion of the
electric field estimates.

I. Introduction

Radar aurora can be studied with high precision
and spatiotemporal resolution using small coherent
radars. This systems can measure echoes from irreg-
ularities in the plasma, which are related with other
physical parameters of the plasma, through known
models.
The radar we use is a 30MHz coherent scatter radar
imager located in Homer, Alaska. Figure 2 shows
a plot of the estimated spectral moments combined
with auroral optical data in the background. The
system has a resolution of 2.25km and 0.5◦ in range
and azimuth respectively. The radar detects echoes
from 5m wavelength irregularities, which are pro-
cessed to produce the spectral moments of the sig-
nal.
The estimations of doppler (ωd) and spectral width
(∆ωd) are then used to calculate convection pat-
terns, (Figure 1). The doppler data is related to
the convection field ~Vd through a heuristic relation
[1], from this we can estimate a smooth potential
that minimize discrepancies with the data.
In this work, we will show the preliminary results
of the use of this method to investigate the event of
December 20, 2015. The region of interest will be
the one enclosed inside the polar sector defined by
the dashed lines in Figure 2.

Figure 1 – Big picture of the data processing.

Figure 2 – Doppler velocities (hue), SNR (brightness) and
spectral width (saturation).

II. Heuristics and Inversion
Method

We can attempt to infer the transverse electric field
wherever coherent scatter data are available using
the empirical relations:

ωd =
(
350 +

[
Vd
100
]2) cos(θ − θ0) + νi (1)

∆ωd = 0.5
(
350 +

(
Vd
100
)2) | sin(θ − θ0)| (2)

where Vd is the convection speed, θ the flow angle
and θ0 a correction term to account for wave turning
effects while νimodels the influence of neutral winds.
If we call φ(data) to the potential calculated in each
point from the data V (data)

d and θ(data), the equation
to get the convection patterns will be:

φ(est) = min
φ
|~V (data)
d − ~Vd(φ)| + β|∇φ| (3)

where β is an optimization parameter. Eqn (3) is
solved with the Levenberg–Marquardt method.

III. Estimation of Flows

The flows and potential estimated for the Figure 2
is shown in Figure 3. Although the polar sector is
being shown in a rectangular grid, the quantities are
defined in cylindrical coordinates at each point.
Because ~Vd ∝ ~E × ~B, the quasistatic nature of the
problem makes ∇ · ~Vd = 0. This means that the
flows estimated directly from the data, must also be
close to incompressibility.
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Figure 3 – Estimated convection velocity field ~Vd and potential.

Figure 4 shows the divergence field scaled by a
factor F (est):

1
F (est) = 1

dr

√
1
2

(
~V

(data)
d − ~V

(est)
d

)2
(4)

where dr is the radial step. In other words,
|∇ · ~V (data)

d |F (est) scale the divergence of the data
with respect to a rough estimate of the flux across
grid cells.
Because of the geometry of the problem,
|∇ × ~Vd| = ∇2φ. This implies that the tendency to
rotate of the flows is related to the inhomogeneities
of the system. Without any model of how the curl
relates with the plasma structure is very difficult to
understand the values of |∇ × ~Vd|, so Figure 5 is
normalized with the maximum value of the curl, to
appreciate the distribution and how it relates the
rotation of the flow vectors.
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Figure 4 – Scaled div.

0.2 0.1 0.0 0.1 0.2
dc

790

800

810

820

830

840

850

860

870

Ra
ng

e

Normalized |∇2 φ(est) |

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5 – Normalized rot.
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Figure 6 – Each row shows an histogram of the spatial
distribution of ~E(est).

Figure 6 shows the spatial distribution of electric
field estimations from φ(est). The dispersion of | ~E|
consistently maps to events of higher geomagnetic
activity and flows with higher peaks. This type of
information may be useful to inform the
assumptions of homogeneity of some large scales
models.

IV. Discusion and Future Work

We were able to make a coarse assessment of the
inversion results by means of the expected proper-
ties of the plasma. The definitive way to do it is
through a careful error analysis. In future work, we
will compare the flow derivatives with the expected
propagated error.

Conclusions
•Coherent radars produce high resolution
reconstructions of convection fields.

•Properties of the fields give insight about the
reconstruction effectiveness.

•Next step: propagate errors across model +
compare them to vector field estimates.
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