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Abstract

The main goal of this work is to study the
phase speed saturation of Farley– Buneman
waves as an interaction with the random tur-
bulent fluctuations in the background and to
asses Bourret’s averaging method effectiveness
to transform the obtained stochastic dynamical
system into a deterministic one.
The results show that we can reproduce a deceler-
ation mechanism and even obtain phase velocities
that saturate close to the ion acoustic speed (Cs)
as expected.

I. Introduction

Farley–Buneman (FB) waves arise in the E region
when the convection speed of the electrons relative
to the unmagnetized ions exceeds a threshold speed
close to the ion acoustic speed. They are observed
in most contexts propagating at phase speeds slower
than the convection speed (linear prediction) and
closer to the non–isothermal Cs. Sudan attributed
phase speed saturation to random, turbulent fluctu-
ations in the electron motion [3].
The present analysis is similar to Sudan’s in that
it considers the effects of random, turbulent electric
fields on the propagation of the waves. However,
the analysis is linear, one dimensional, and based
on fluid theory. We employ systems theory and
the formalism of stochastic differential equations to
examine how stochastic fluctuations in the electron
flow bias the wave dispersion relation. It shows how
phase-speed saturation can be evaluated in terms
of the autocorrelation function (ACF) of the flow
fluctuations. Figure 1 summarizes our strategy to
approach the problem.

Figure 1: General strategy to calculate the phase speed.

II. Farley–Buneman Linear Model
and Bourret’s Integral

The fundamental model used consist of the continu-
ity and momentum equations for the e− and assum-
ing: e− are inertialess, harmonic spatial variation
with wave number k and charge density n ≈ ni ≈
ne. Defining:

A◦ =
 0 1
−k2C2

s − ikv◦νinψ −νin(1− ψ
−1)


The linearized system can be written as

u̇ = A◦u (1)
with u = ( nn◦, ikvi)

T and where ψ, n◦, νin, v◦ and
vi are the anisotropy factor, background density,
ion–neutral collision frequency, electron convection
speed and ion speed respectively. From the disper-
sion relation of A◦ we can obtain the condition for
instability v◦ > Cs(1 + |ψ|) and the phase speed
v(lin)
p = v◦/(1 + |Ψ|)−1.

Extending (1) to model a random perturbation:
u̇(t) = (A◦ + αR(t,$))u(t) (2)

where $ is a stochastic variable and α an expansion
parameter. System (2) is stochastic, but assuming
short correlation times, Bourret’s integral

A1 ≈ α2
∫ ∞

0
〈R(t)eA◦τR(t− τ )〉e−A◦τdτ (3)

can transform it into a deterministic system by cre-
ating a new operator A1.

III. Stochastic Modeling of Phase
Speed

The interaction with the turbulent background will
be through the e−, so we must replace v◦→ v◦(1 +
αξ(t)), where ξ(t) is random. This will define the
random matrix

R(t) =
 0 0
iαξ(t)kv◦νinψ 0

 (4)

Figure 1 illustrate how this problem simplifies: in-
stead of solving a complex nonlinear system, we are
trying to reproduce the nonlinearities by random
variations in the e− convection speed.

Figure 2: Grayscales represent random medium.

IV. Stochastic Forcing

Using (4) in (3) we will have a deterministic system
for the averages 〈u̇〉 = (A◦ + A1(c1, c2))〈u〉 where:

c1 =
∫ ∞

0
〈ξ(t)ξ(t− τ )〉 sinh(Γτ ) dτ (5)

c2 =
∫ ∞

0
〈ξ(t)ξ(t− τ )〉(cosh(Γτ )− 1) dτ (6)

where Γ depends on the system parameters. The
structure of 〈ξ(t)ξ(t− τ )〉 contains the random be-
havior of the turbulent e− speed deviations.

V. Data Processing

ξ(t) was obtained from a full 3D kinetic simulation
[2] through the following steps:

S1 . Simulate instability → get electron fluxes.
S2 . Calculate vo from flux across Ē × B̄ direction.
S3 . Compute ξ(t) (remove artifacts and trends).
S4 . Construct the function 〈ξ(t)ξ(t− τ )〉.
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Step 1: Simulation output
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Time series of electron and ion velocities
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Step 2: e− and ion speed.

0.25 0.30 0.35 0.40 0.45
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

ξ(
t)

1e 2 Speed deviation ξ(t)

Step 3: Speed deviations.
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Step 4: ξ(t) ACF
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Figure 3: General strategy to calculate the phase speed.

VI. Results

The phase velocity was obtained by the relation
vp = <{ω}/k, where ω is the positive eigenfre-
quency of A◦+A1(c1, c2). Figure 3 illustrates how vp
approaches the vicinity of the ion acoustic speed as
more points are taken from the autocorrelation func-
tion. When c1 and c2 gets smaller, the estimated vp
gets closer to the phase speed predicted by the linear
theory v(lin)

p . vp is going to be in the vicinity of Cs
when 〈ξ(t)ξ(t− τ )〉 ≈ 0 for τ > 2.1× 10−3 holds.

Conclusions
•This approach can successfully account for
wave deceleration and also for vp close to Cs

•Differences with Cs may be caused by wave
heating, which was not include on our model.

•The fact that no distribution was assumed for
ξ(t) should be a motivation to extend this
results to similar scenarios.
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