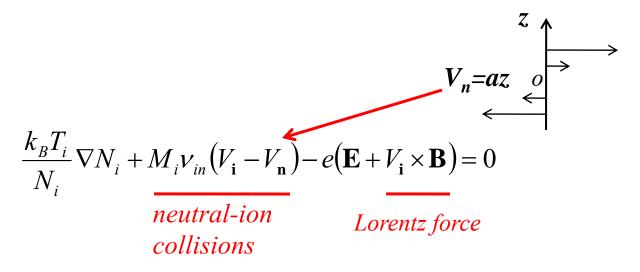


Formation and behavior sporadic E under the influence of atmospheric gravity waves

Goderdzi G. Didebulidze, G. Dalakishvili, G. Matiashvili

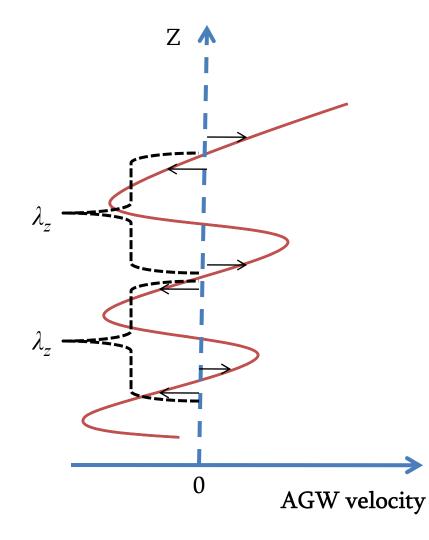
didebulidze@iliauni.edu.ge


Abastumani Astrophysical Observatory

Theory of sporadic E formation by atmospheric waves

Windshear theory:

The mid-latitude Es is a result of neutral-ion collisions and Lorentz force acting on the metallic ions (Axford, 1963). In the case of horizontal neutral wind with a vertical shear, the thin layer of converged ions could occur in the vicinity of the horizontal plane where the wind velocity (V_n) changes direction (zero wind nodes).

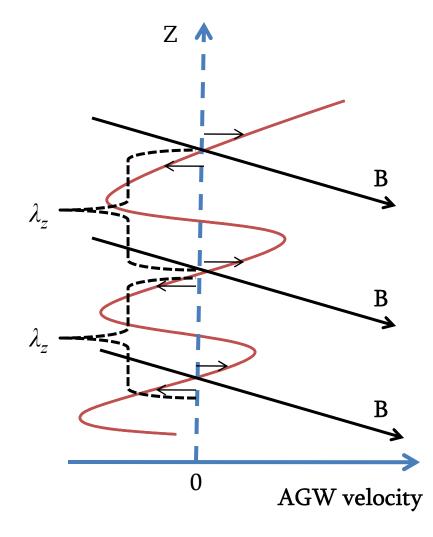


We consider horizontal (V_i) and vertical (W_i) drift of ions, when neutrals velocity is composed of background horizontal wind velocity $-\mathbf{u}_{0n}$ and velocity perturbation V_n produced by atmospheric waves i.e.:

 $\mathbf{V}_{\mathbf{n}} = \mathbf{u}_{\mathbf{0}\mathbf{n}} + \mathbf{v}_{\mathbf{n}}$

Here u_n, v_n, w_n are the horizontal x, y and the vertical z components of perturbed velocity $\mathbf{v}_n(u_n, v_n, w_n)$, respectively. We assume that, horizontal (*x*) background wind velocity (1) $\mathbf{u}_{0n} = cons \tan t$ or has linear shear in horizontal y direction, $u_{on}(y) = ay$. In our case velocity perturbation $\mathbf{v}_n(u_n, v_n, w_n)$, corresponds to the AGWs evolving in the horizontal background wind.

Ions vertical convergence by AGWs

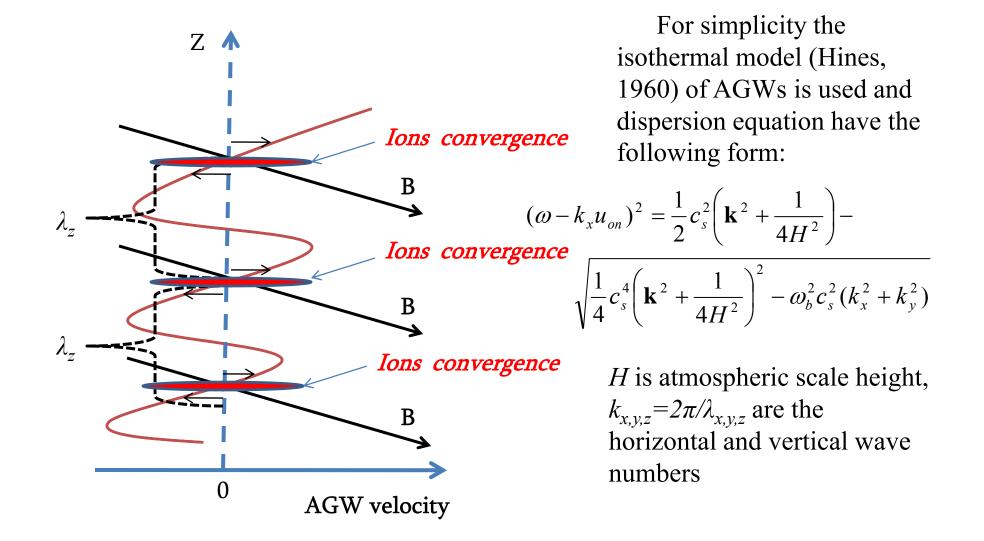


For simplicity the isothermal model (Hines, 1960) of AGWs is used and dispersion equation have the following form:

$$(\omega - k_x u_{on})^2 = \frac{1}{2} c_s^2 \left(\mathbf{k}^2 + \frac{1}{4H^2} \right) - \sqrt{\frac{1}{4} c_s^4 \left(\mathbf{k}^2 + \frac{1}{4H^2} \right)^2 - \omega_b^2 c_s^2 (k_x^2 + k_y^2)}$$

H is atmospheric scale height, $k_{x,y,z}=2\pi/\lambda_{x,y,z}$ are the horizontal and vertical wave numbers

Ions vertical convergence by AGWs



For simplicity the isothermal model (Hines, 1960) of AGWs is used and dispersion equation have the following form:

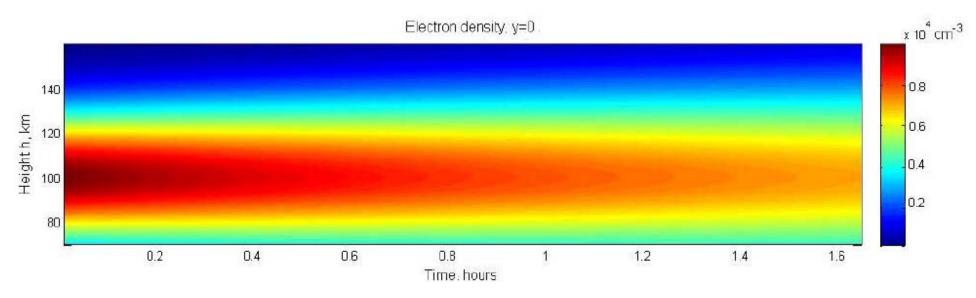
$$(\omega - k_x u_{on})^2 = \frac{1}{2} c_s^2 \left(\mathbf{k}^2 + \frac{1}{4H^2} \right) - \sqrt{\frac{1}{4} c_s^4 \left(\mathbf{k}^2 + \frac{1}{4H^2} \right)^2 - \omega_b^2 c_s^2 (k_x^2 + k_y^2)}$$

H is atmospheric scale height, $k_{x,y,z}=2\pi/\lambda_{x,y,z}$ are the horizontal and vertical wave numbers

Ions vertical convergence by AGWs

Ions vertical distribution under an influence of AGWs and background horizontal wind

The ions density N_i in the lower thermosphere can be obtained by solution of the following continuity equation:

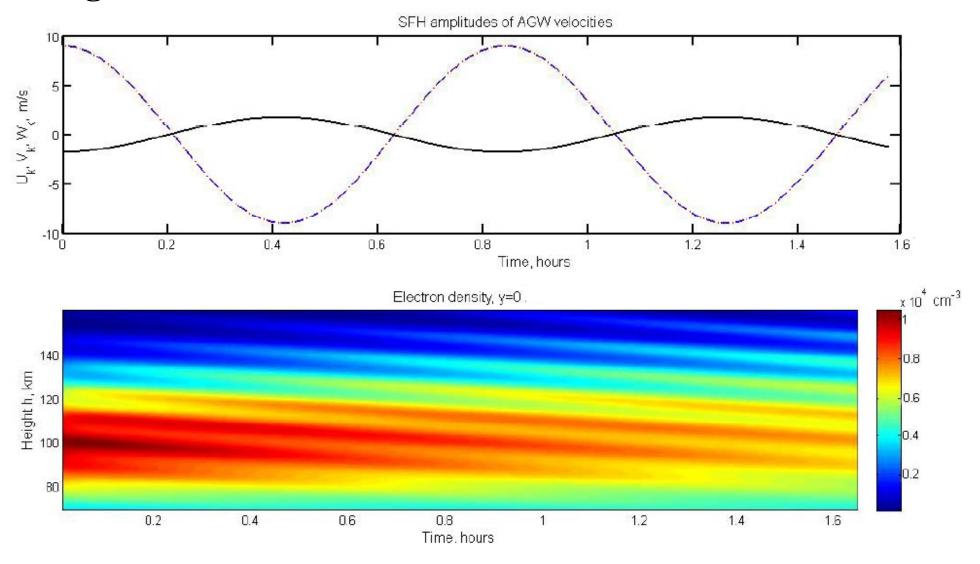

$$\frac{\partial N_i}{\partial t} + \frac{\partial}{\partial y}(N_i v_i) + \frac{\partial}{\partial z}(N_i w_i) = q - l$$

Where v_i and w_j are ions drift velocity in horizontal (y) and vertical (z) directions

$$\mathbf{v}_{i} = \left[(u_{on} + u) \sin I + \kappa \left(v - \frac{2k_{B}T}{N_{i}M_{i}v_{in}} \frac{\partial N_{i}}{\partial y} \right) + \left(w - \frac{2k_{B}T}{N_{i}M_{i}v_{in}} \frac{\partial N_{i}}{\partial z} \right) \cos I \right] \frac{\kappa}{1 + \kappa^{2}}$$

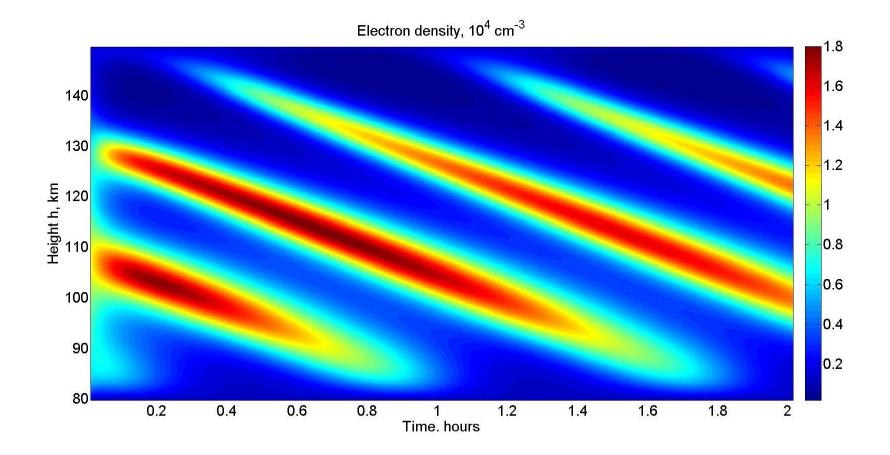
$$\mathbf{w}_{i} = \left[-(u_{on} + u) \sin I \cos I - \kappa \cos I \left(v - \frac{2k_{B}T}{N_{i}M_{i}v_{in}} \frac{\partial N_{i}}{\partial y} \right) + \left(\kappa^{2} + \sin^{2} I \right) \left(w - \frac{2k_{B}T}{N_{i}M_{i}v_{in}} \frac{\partial N_{i}}{\partial z} \right) \right] \frac{1}{1 + \kappa^{2}}$$
The atmospheric wave velocities
Ambipolar diffusion

Evolution of the ions/electrons density height distribution in the case of absence of AGWs

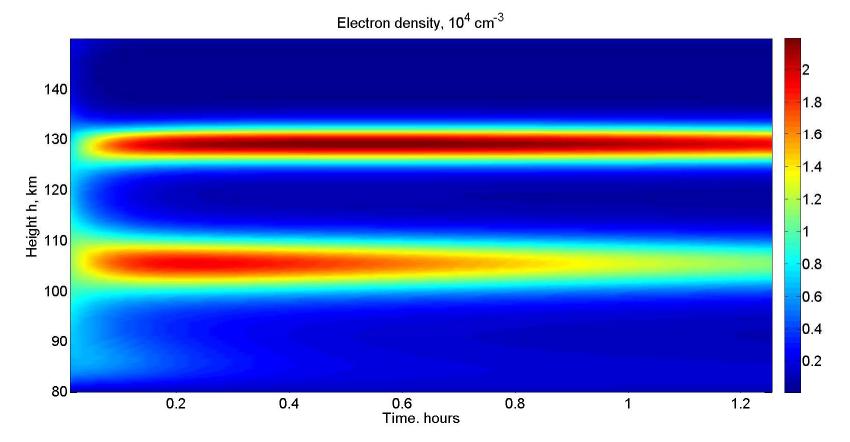


The initial distribution of the ions is described by the following Gaussian type function:

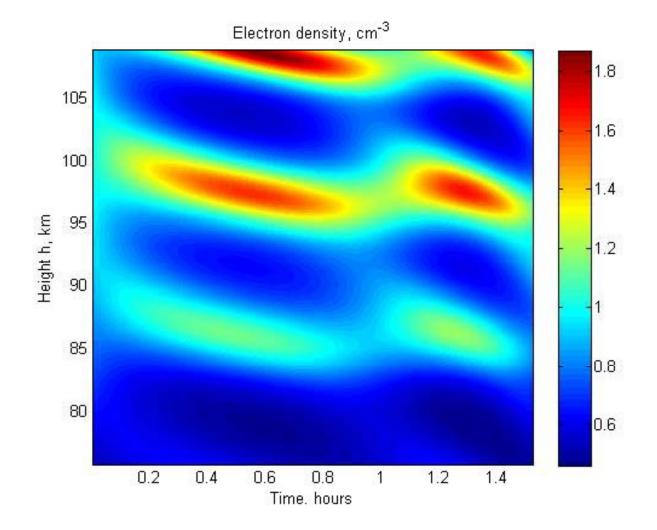
$$N_i(z,t=0) = N_m \exp\left\{-\frac{(z-z_m)^2}{H_{eff}^2}\right\}$$


 N_m is maximal ions density (10⁴cm⁻³) at the height $z=z_m=100$ km. The scale height $H_{eff}=20$ km. The initial distribution of ions is described by Gaussian type function:

Influence of AGWs on the ions/electrons density height distribution


H=10 km, $\lambda_{x,y}$ =120 km, λ_z =12 km, u_{on} =0 (Didebulidze et al., JASTP, 2015).

The ions vertical convergence by AGWs in the presence of horizontal background wind


H=10 km, $\lambda_{x,y}$ =120 km, λ_z =24 km, u_{on} =40 m/s.

The formation Es layers by AGWs in the case of presence of horizontal background wind with V_{phx} =- u_{on}

 $u_{on} = -87 \text{ m/s}$

The formation of quasi-periodic echoes like structures by AGWs evolving in the horizontal inhomogeneous $(u_o = ay)$ background wind

H=10 km, $\lambda_{x,y}$ =120 km, λ_z =12 km.

CONCLUSIONS

We have shown that the declined propagation $(k_x, k_z \neq 0)$ of the AGWs can influence on ions/electrons vertical convergence. The condition that the value of the AGWs horizontal phase velocity (ω_g/k_x) is close to the value of background horizontal wind velocity $(-u_{on})$, is convenient for ions convergence into horizontal thin layers and formation multilayered sporadic E (Es layers).

The distances between Es layers formed by are about AGWs vertical wavelengths λ_z .

The ions/electrons density oscillations with shorter AGWs periods in the Es layers, accompanied by their declined motions, is similar to quasi-periodic echoes observed structures.

Acknowledgements: Giorgi Dalakishvili thanks SHOTA RUSTAVELI NATIONAL SCIENCE FOUNDATION GRANT FR/51/6-300/14.