Simulations of vertical ion-drag effect on neutral winds and density at low and middle latitudes
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ABSTRACT MOTIVATIONS Vertical momentum equation: Highlights of 3D electrodynamo model
The effects of vertical ion-drag force on the vertical winds in the equatorial region may contribute 1. Daytime eastward electric field = predominant upward ion drift aa’iz +TU-VU, = _1% + gl (1) + Fixed height grids (correspond to the apex
to the generation of the crests of the equatorial thermosphere anomaly (ETA). However, such effect at equatorial region—> EIA, neutral density . P heights of field lines at low latitudes) Grid of the 3D electrodynamo mode

has not been well studied by most general circulation models (GCMs) currently due to the
hydrostatic assumption carried by most GCMSs. The non-hydrostatic global ionosphere and
thermosphere model (GITM) solves the vertical momentum equation and thus offers the
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opportunity to evaluate the relative contribution of ion-drag force to the vertical momentum change [e.g _ ,, P | 4 _ . _ |
- - L - - - - et al. 2010[; - ‘ » Using 3D apex quantities (Richmond 1995) Mauts and Richmond. 2016,SSR

of vertical winds and density In the low latitudes. In this study, GITM simulations have been electrondensity Highlights of GITM
conducted by coupling with the newly developed 3D ionospheric electrodynamo model to improve 3. The impact of the vertical ion- . .o =~ Electric fields: 7 — — — )
the electrodynamics of GITM at low latitudes. The variations of vertical winds, neutral density after ~ drag force on vertical neutral 7 * e * Flexible grid resolution ectric hields: E =|Eqq1d4|+ Eg2d; (2)
introducing the electrodynamics have been examined. Furthermore, the vertical ion-drag effect on winds and neutral density may . . Solves in altitude coordinates | o
neutral winds and density at low and middle latitudes has been investigated qualitatively and contribute to the formation of SR + Non-hydrostatic solutions » Geomagnetic eastward electric field

compared with the impact of horizontal ion-drag force. ETA; Lei et al. 2010,JGR « Ed1 is constant along the magnetic field line

4. VERTICAL ION-DRAG FORCE AND MERIDIONAL ION-DRAG FORCE

1. METHODOLOGY

2. VERTICAL WINDS AND BUOYANCY
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