Calculating the 3-dimensional current in the ionosphere and its associated magnetic perturbation
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Background Is all the current flowing in the E-region? 15 LT: Joy[nA/m?] at A,,= 15° 20 LT: J,[nA/m?] at A= 15°
lonospheric e.Iect.ric fields fand currents are driveh by coII.ision.aI interactic?n betwe.en * Wind driven current J_+J(E, ) (blue line) dominates in the daytime E-region with - e I _'Jg”(Eg] ; s | '_Jg'+J{Eg)' :
th.ermospherlc WlndS. and |.ons, by magne.tos.pherlcally driven ion cor\vectlon and field- 450 to 650 nA/m? in the equatorial ionization anomaly (EIA) region. 500 e | 500 - e
aligned currents at high latitudes, by gravitational and pressure gradient forces on the * Thel, +J(E,) is the largest current component up to ~200 km in the EIA region. o ) | o e |
ionospheric plasma, and by weak currents from the lower atmosphere. * In the F-region the wind driven source current J, is small, while J(E, ) is larger . A
For simulating the electric field due to these different drivers we assume that the electric ~10nA/m? because of E, generated mainly by the E-region dynamo. gm - - g :
potential is nearly constant along geomagnetic field lines, and therefore the electric field * In the F-region ), and J, are important and the dominant current sources in the ano __ i ﬁsoo ) !
variations can be expressed in two dimensions. The current density, however, depends also EIA region with magnitudes of ~20-30 nA/m2at 15LT and 20 LT. ! j _
on the conductivity distribution o, and consequently varies in all three dimensions. e The ), is westward above the F-region peak and eastward below. ], is almost 200 - 200 - -
The objective is to determine the 3D current and its associated magnetic perturbation balance but there is a small eastward current J(E ) in the E-region. 0o ——— | T N
* To accurately determine the magnetic perturbation at Low Earth Orbit (LEO) altitudes * Thel, is eastward and closed through the daytime E-region with a westward C A S e
it is important to consider the 3D current variation. current J(E,). ieure 3: Maanetic castward current [na/m?l ot magnetic atitude . 15
. . . . o e e - e °_ ° igure s5: iviagnetic eastward current [nA/m<] at magneticC latitude A = °
* The 3D current and LEO magnetic perturbation can be used as a diagnostic and can be To accurately c.:Ieterml.ne.the magnetic pert.urbatlons at LE(? height it is important = magnetic longitude ¢ =15¢ for September solar maximum conditions
compared to satellite measurements, e.g., Magsat, @rsted, CHAMP, Swarm. to take the height variation of the current into account which the 3D model can do. (r, _-00) at 15 Iocal time (LT) and 20 LT (19UT and OUT, respectively).
* It further our understanding of the physical processes especially in the equatorial
ionosphere. lonospheric currents and their associated magnetic effects .
* A possible application is the assimilation of LEO magnetic perturbations into _ — | . * At 515 km b,-AB due to J(w+E,) is
numerical models. 3. September solar maximum at 15 LT and ¢,=300 September solar maximum at 20 LT and ¢,=300 almost of similar magnitude as due to
Jo(W+E,) Jo(p+E,) Jo(g+E,) [nA/m?] . Jo(W+E,) Jo(p+E;) Jo(g+E) [NA/M?]
o A3 AR ot PR e S By SRRyt P J(p+E,) and J(g+E,) at 15 LT and even
2D current modes . S . | % st AR ¢ B | B o smallerat20LT (Fig. 5).
T:e formul;atlon to solve for the global 'OQOSph?“C electric potential ® and to calculate © 2 0 2 40 a0 20 0 2 4 a0 20 0 2 4 Bae 200 o 4 a0 2 4 aw o » @ *Theday-night differencein
: : : 1 : H geog. latitude geog. latitude geog. latitude geog. latitude geoq. latitude geog. latitude .
the ionospheric current J is consistent and satisfies b ABE T N o ABEET T . AB(E T o, AB(ESE, ) 0 ABGENTT] (o b,-AB(g+E,) and b,-AB(p+E,) is smaller
V]:O (1) _ 700 4 Dy 700 gy 700 e g L 700 e 700 et 700 " .
- e ol T et e for at th : & B B LI § 2 Wii B thaninbyAB(w+E,)
over each element ( .ue e.ement in Fig. 1).T e.e ectric potential is solved for at the center § 2 = = ‘ SHE = i . =3« b,AB(g+E,) and b,-AB(p+E) have
of the element (red big point) and the electric field E can be calculated from © 100 P 100 et 100 Rt g S 100 e 100 ek T00 e s of
40 20 0 20 40 40 20 0 20 40 40 20 0 20 40 g-10 40 20 O 20 40 40 20 0 20 40 40 20 0 20 40 Mg OppOS|te SlgnS.
E — _VcD (2) geog. latitude geog. latitude geog. latitude -1 geog. latitude geog. latitude geog. latitude
at the blue interface points. The divergence of the wind driven current J. the plasma Figure 4: Geographic eastward current [nA/m?] (top panels) and scalar magnetic perturbations [nT] (bottom panels) September solar maximum at 515km and ¢,= 300°
pressure gradient and gravity driven current, J and J, respectively, are balanced by the at A,=300° for September (F;,;=200) at a. 15 LT (19 UT) and b. 20 LT (OUT) due to J(w,E,,), J(p,E;), and J(g,E,). o boABTat LT - o boABnTjat20LT -
convergence of electric field driven current J; and field-aligned current J, * The E-region westward return current J(E,) is up to ~350 nA/m? at the equator, and 10 ETE
| —V-Ueg+ L=V -[Jw+ Jp+ J,l (3) ~30-60 nA/m? at mid-latitude at 15LT, while ~¥80 nA/m? at 20 LT. The magnetic g 'ﬂﬁB{g,Eg};'E T —— -_bﬂﬁamﬁg};
with signal b -AB(g+E,) is therefore positive and decreases with altitude in the F-region. N \/ :EEEE‘EE:L " jigﬁiﬁ#
Jg = |opE, +0yb, X E || (4) * b,'AB(p+E,) is negative and reduces the main magnetic field. The E-region eastward Y 4 2 o 2 4 s w0 40 2 o 2 4 e
J,=lopux B, + oyb,(u x B,)] (5) current J(E)) (~70 nA/m? at 15 LT) leads to negative equatorial perturbation. geog. latitude geog. latitude
]p= . Bl2 VP X Bo (6) Figure 5: Scalar magnetic perturbations [nT] at 515 km
_ nm; . . . .
Jg= 57 9% B, (7) Comparison of approximated b_-AB with 3D calculation 15 Lt and ¢,=300° 15 Lt and ¢,=300°
. . . - .. . . a. iamag) [n . n
and o, and o,, are the Pedersen and Hall conductivity, respectively, the neutral wind is u, E, * The diamagnetic effect is an approximation of the plasma pressure gradient forcing effect and N7 BN o =
. - pe . . . . . . 2 o A , : g 50
is the electric field perpendicular to the geomagnetic main field B, with the unit vector b,. assumes YanrtVd) L P = constant. g;gﬁ:@ o
The plasma pressure P is P = n_k.(T.+T.) with the electron density n_, the ion and electron ) 2Ho . e . . . . ol - % 0
P P © ol Ti#Te) Y e L e Luhr et al. [2003] using CHAMP data quantified the diamagnetic effects with -5 nT in the EIA '
temperature T. and T,, respectively, and the Boltzmann constant kg. The gravitational . Ly 1 10
o , _ region based on AB;ume, = —P22 With i the permeability of free space. g  _ ABED)[T]
acceleration is g, and the ion mass is m.. . B ool  m
* The diagmagnetic effect (Fig.6a top) overestimates the magnetic effect at mid-latitude and e 4 = " tEs
E= E ; 0
apex height underestimates it at low latitude since the influence of J(E ) is not included. i = > 2 g 5
L  The magnetic signal of J(g,E_) is approximated b o N on
S o= oI==- } T~ 5 5 (& g) PP Y ABg(h) = U, L ]g(h )dh by AB(p,E,) - AB(diamag)[nT] = :; . AB [Tl -
-~ magneticfieldline » The approximation AB, (Fig. 6b top) doesn’t take into account the westward E-region return 5 j //Q\\\Q I.}ao < ‘ %3
current defined To solve for the electric potential we current J(E,) which is especially strong at the magnetic equator. et o \lfi\ | : <4 |

"""""" 308 0 30N

at turquois and consider quasi steady state and can Figure 6: b_-AB [nT] at 15 LT for September with F,,,=200 due to plasma pressure gradient (a) and gravity (b) driven current: 0 geog. laitude
small red points reduce Eq. (3) to 2D by integrating V'JL approximation (top); using3D current (middle); difference (bottom).
along magnetic field lines from the

" lower boundary at 80 km bottom in one hemisphere to the other. Magnetic effects due to combined gravity and plasma pressure gradient driven current Froz=T1 2d ;=300
Figure 1: Schematic of discretization along a field line. . : . , 709
) 15 Lt and ¢,=300° _ 20 Ltand $,=300° C;mbmg ’Lhe current J(p,g+E ) reduc;s in general the magr|1et|c g /)
" . . . - N ' AB,, [nT] effect in the upper F-region compared to J(p,E_ ) or J(g,E,) alone. Sal L ]
The boundary conditions for the field line integration are the current from the lower e i LA o I— —T . PP 5 . P (P '?) (8 .g) 200 -—-7/;%/\7;\\“\ - B3
. . . . E g0 E ‘g0 * However, in the lower F-region the magnetic signal varies — Al R
atmosphere and at the top of the model the high latitude field aligned current calculated s 1-L L strongly with altitude © 2 0 2 4 :
from an empirical ion convection pattern and ionospheric conductivities. = 3z 5 : §3 . The magnetic signal si‘lould hot be corrected for the diamagnetic . r %
3D current: Once E | is calculated the current perpendicular to B can be determined from * ey * ap @by effoct alone S 0 | _ﬁfLo_ ®
Eq. (4)-(7). The current is defined at the interfaces of each element to ensure current = w0 = L Using the ar;proximations for b.-AB(p,g,E..) does not reduce the 200 fmﬁ\ :
continuity. The current density J, is determined from the integrated divergence of J, along g E ° 3 1k error in the top F-region (Fi 80middlé ézrlfottom) o er the w0 2 W
a field line. @ 20 1M 8 . e toP 5190 1T16. o ! Figure 9: b,-AB(p,g+E,,) at
Do , _ _ o0 S simulation indicates that in the bottom F-region the error in the 15 LT and 20 LT for .. .=71.
The electric field E can be separated into components associated with each current source AB,(3D) . o i | han the sienal itself 10.7
- approximation is less than the signal itself. 0, AB(p,g,E,E ) [NT] ™™

E=E,+E +E_, where each component drives conduction current that closes its source

5 T
% % : 1 . . . . . _ 8
current e.g., V-(J. +J(E. ))=0. g 3 5 e AtLEO helght during solar minimum b, AB(p,g+Epg? IS very - . LT .EE. | lﬁ
e b ; | I O okl ; L - - g small (Fig. 9) and can probably be neglected especially at night. 70 | L .
wo— The discretization is flexible and to resolve 08 0 o 08 0 : : . g 6O - |2
points the strong height and/or latitudinal gradients geog. fatiude gecg. fatiuce * Evenfor solar maximum b,-AB(p,g+E,g) is small after 22 LT (Fig. 2 7o x““'u-—xllj =L
T e s correspond at auroral and equatorial latitudes the 10). ) 220 :?:I;}TF?}ELTF' N :j
: ‘h . . . . . . . L : ]
S ———— A L . . Figure 8: by AB due to J;+)(E ) and J#l(E, ) for o captyring the current sources is important when analyzing satellite v a0 o 20 a0 H
o elements resolution is refined in these regions (Figure September & F, ;=200 for 15 LT (a) and 20 LT (b): : ) . : gecg. latitude 8
| 2). The vertical resolution is defined by fixed approximation [top), using 3D current (middle), data for studying, e.g., the equatorial electrojet, and not removing the
ST ' Y diff b ff lead bias i hich d ic field del Figure 10: b_-AB(p,g+E ) at 22 LT
e ———— e et e heights corresponding to the apex of low ifference (bottom). erfect can lead to bias In, e.g., higher order magnetic rield modeils. e 208 P8
B0 4+ -+ b e 44 b+ ++ | or 10'72 .
o | i latitude field lines. In the E-region this leads
ghemn .gﬁgg ”Il‘iiiﬁgg e Se to roughly 1/3 scale height resolution but Reference Linr, H., M. Rother, S. Maus, W. Mai, and D. Cooke (2003), The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modeling, Geophys. Res. Letters, 30(17).
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Figure 2: Example of discretization.
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