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1. Introduction

Motivations and Goals Data assimilation system
COSMIC potTEC absnaion The Formosa Satellite-7/Constellation Observing  Synthetic RO sTEC data are assimilated into a coupled model of
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System for Meteorology, lonosphere and thermosphere, ionosphere, and plasmasphere by using EnSRF. _Gps
Climate-2  (FORMOSAT-7/COSMIC-2) GNSS pata - RO sTEC
Radio Occultation (RO) payload can provide
global observations of slant Total Electron
Content (sTEC) with unprecedentedly high
spatial and temporal resolution.
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« RO sTEC along a given radio path can be retrieved from
signals received LEO GPS receiver RN
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2. EnSRF Experiments 3. Experiments with F-3/C vs F-7/C-2
7/C-2) are compared with one-hour data window. An additional experiments
Step 1 calculate the increment of observed state variable  Step 2 calculate the increment of model state variables with 24-minute data window for FORMOSAT-7/COSMIC is carried out.
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ooz — Posterior TEC . density on model grid” ensemble satellites - 6 low inclination satellites (Phase1)
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oo1r | & Only synthetic data for Phase1 are
.| %ncreament: ATEC> - _ Ax = abA y used in our experiments!
. ‘ ( \ Number of RO ~ 2000 RO events per day ~ 8000 RO events per day (Phase1)
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Figure 3. Basic idea of sTEC data assimilation according to Bayes rule. IE F-3/C F-7/C-2
Results A1: Experiments with larger size of -
A1. Experiments with Different Ensemble Sizes ensemble shows smaller RMSE because the O 25 1
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Observing System Simulation Experiments (OSSEs) 10" estimation of b is better. L]
with 10, 20, 30, 50 GIP/TIEGCM ensemble ¢ 35 ' , ' ' ' ' ' O ]
members are carried out. & _ g
» Synthetic sTEC data sampled from a “true” state __ control run with 50 ensembles | o
.. . . 5 Ensemble Size 10 N 411 368 365
are assimilated into the model continuously O — Ensemble Size 30 J 15 373 37E 373 352
from UT 0000 to UT 1200. T ! Ensemble Size 50 -
« Both e~ and O™ density are updated by using O 2-5”/.\‘\&. . 8
EnSRF. ~ 1 S |
* GIP/TIEGCM ensembles are generated by =S ] |
perturbing following model drivers according to (%_ o |
a normal distribution specified below. | O 45
F10.7 (WHZZ) cross-tail auroral % . ] S . .
" potential hemispheric  © | Universal Time (Hour) |
drop (kV) power (GW) S 1 0 Figure 7. RMSE of 07T density analysis and forecast states during\EnSRF
Ensemble Mean 120 x 1072% 45 16 GW -'é _ / — cycling . Light green and orange bars show the number of RO events.
Standard 15 % 10-22 5 LV > GW ECED 0 | | , , | | New Finding: RMSFS c.ontmue dec.rease during forecast. steps
Deviation of 0 2 4 6 8 10 12 after data assimilation update likely due to T-I coupling.
“True” 140 x 10~22 50 kV 18 GW Figure 4. Root-Mean-Square Error (RMSE) of 0% density over mid- Results B: With the help of F-7/C-2 sTEC data, NmF2 errors at
Sl and low- latitude F-region (-46° to 46° latitude and 200 to 500 km mid- and low- latitudes are reduced significantly.

altitude) during data assimilation cycle.
F-3/C with 1-hour data window G F-7/C-2\vith 1-hour data window

A2. Experiments with Different Localization Length Scales

OSSEs with different localization length scales are carried out.

* Single sTEC data is assimilated into the model. The tangent point
of this data is at local noon, 350 km, 0" longitude, and 0" latitude.

« Gaspari-Cohn (GC) function [Gaspari and Cohn, 1999] is used to
specify a for a given normalized distance r. The tangent point is
assumed as the observation location.
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1 - a(r)=6C(r) A number of OSSEs are carried out for FORMOSAT-7/COSMIC-2 STEC
[ | 1 _ Hos Forr>1 s | observations using the EnSRF.
i | | = a(r) =0 N Our main findings are as follows.
N . T -15} / ] . . . .
| leg 0 P A , A1. EnSRF analyses and forecasts in the mid- and low-latitude F-region
0 0.5 1 . . . . . .

=9 | 05 ionosphere improve with increasing size of ensemble.

O — : . : i
| | . | Q= Figure 5. Top panel is the 3-D A2. EnSRF benefits from covariance localization with a large localization
! Il = structure of GC function. Bottom panel | H <cale in E-reqi g 1 localization | h ccale in F-reqi
| _ % - < the GC vertical cross section ength scale in E-region and a small localization length scale in F-region.

- - = =

S s f s e , , , s B. sTEC data from FORMOSAT-7/COSMIC-2 Phase1 have a great potential
| | ' o to improve the mid-and low-latitude ionospheric specification and
forecast over FORMOSAT-3/COSMIC.
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