Signatures of the Madden-Julian oscillation in the thermosphere?

Federico Gasperini Utah State University gasperini@usu.edu

Maura Hagan Utah State University

Abstract

Terrestrial weather is known to greatly impact the mean state of the thermosphere via the dissipation of gravity waves (GW) and solar tides.

Using thermospheric cross-track wind measurements from the CHAMP and GOCE satellites, a MERRA/TIME-GCM simulation, and **Outgoing Long-wave Radiation** (OLR) data, we demonstrate¹:

1. The existence of a prominent global-scale 90-day oscillation in the thermospheric mean zonal winds and in the diurnal eastward-propagating wavenumber 3 tide (DE3) during 2009-2010.

2. Its connection to variability in tropospheric convective activity, possibly associated with the Madden-Julian oscillation (MJO).

¹ Gasperini, F., and M. Hagan (2017), Evidence of tropospheric 90-day oscillations in the thermosphere, Geophys. Res. Lett., 2017GL074461 (submitted).

davs from Jan 1, 2009

Fig. 2 TIME-GCM zonal mean wind and DE3 wind amplitudes before (a, b) and after (a', b') a 85-95 day filter is applied.

Fig. 4 Latitude-longitude map of 85/95-day filtered diurnal-mean OLR (left) and model mean zonal winds at 400 km (right). Winds and OLR display distinct latitude-longitude structures with most variability concentrated near the tropics.

Our results suggest that GW and tides modulated by 90-day oscillations in tropospheric convection may transfer this periodicity to the mean circulation of the thermosphere via dissipation and energy/momentum deposition.

> This work was supported by NASA subaward 75900816 to Utah State University under the USPI Program for the GOCE Mission.

