as studied by an airglow imager, CHAMP satellite, and a general circulation model
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1. Abstract 3. Event 1: April 30, 2006 4. Event 2: September 28, 2006
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that internal gravity waves are the cause of the observed TIDs.
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Fig. 1 — Top left panel: Airglow Image, CHAMP passage is shown with black dots and the timestamp, blue circle is KTB station, dashed black line is where the keogram (top right panel (b)) is taken. Top right panel: (a)

contaminated keogram along CHAMP, (b) non-contaminated keogram along dashed black line in top left panel, (c) absolute intensity, black line indicate CHAMP passage time. Bottom left: (a) neutral density, (b) neutral

° density deviation, (c) electron density, (d) electron density deviation by CHAMP, red lines indicate CHAMP passage over KTB station. Bottom right: (a) absolute intensity, (b) intensity deviation, (c) neutral density

2- Int rOd UCtIOn & Data deviation, (d) electron density deviation, red line on (b) and (c) are fitted lines for the data input between dashed black line is the same panel, red line in (d) indicate shifted electron density deviation along the
magnetic field lines from CHAMP altitude to airglow altitude.
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Fig. 2 — Top left panel: Airglow Image, CHAMP passage is shown with black dots and the timestamp, blue circle is KTB station. Top right panel: (a) keogram along CHAMP, (b) absolute intensity, black line indicate CHAMP
passage time. Bottom left: (a) neutral density, (b) neutral density deviation, (c) electron density, (d) electron density deviation by CHAMP, red lines indicate CHAMP passage over KTB station. Bottom right: (a) absolute
intensity, (b) intensity deviation, (c) neutral density deviation, (d) electron density deviation, red line (d) indicate shifted electron density deviation along the magnetic field lines from CHAMP altitude to airglow altitude.
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