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Our approach is to run the model with select wavelength ranges that are scaled and then to
Solar soft X-ray irradiance (4 less than 30.4 nm) deposit energy in the lower thermosphere / ionosphere, however| | examine the impact on modeled temperature. In the first case, we scale the spectrum in
the impact of this wavelength region spans entire thermosphere. We use a recently developed 1D model of the||individual ~1nm wavelength bins. We perform 37 models runs with one wavelength bin
thermosphere and ionosphere to explore the impact of the solar soft X-ray irradiance on temperature. scaled by zero and all others by 1.0. By looking at the change in model temperature
(compared to the case where all scaling factors are 1.0), we see that thermospheric
temperature is especially sensitive to solar soft X-ray wavelengths. We continue by looking at
cases where the entire solar soft X-ray spectrum is scaled, and look at terms in the heat
equation to explain how solar soft X-rays warm the entire thermosphere. We end by
comparing the effect of solar soft X-ray irradiance to the impact of the important He 30.4 nm

emission.
Neutral Temperature as a function of Altitude

for different soft X—ray scaling factors

A. Introduction and Motivation

B. Description of ACE1D model

The Atmospheric Chemistry and Energetics (ACE) 1D model is a global average model that self consistently solves
the continuity and energy equations to give the densities and temperatures of the ions, electrons as well as major
and minor neutral species. The model includes all important radiative, chemical, and conductive processes.
Calculations of neutral densities and exospheric temperatures are found to be in good agreement with empirical
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In this sequence of figures, we show model results that illuminate the role of the solar
soft X-ray irradiance on temperature. In each panel, the various color lines are showing
calculations with the solar spectrum below 30.4 nm scaled according to the factors listed.
1. Thermospheric temperature is shown to increase significantly with increase in solar

200 F
100 E

Figure (right): Heating due to absorption in the Schumann Runge
bands (red) and Schumann Runge continuum (blue); exothermic
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reactions of neutral species ( ), quenching of excited species 7o — soft X-ray irradiance.
(dodger blue), direct heating due to thermal collisions with o 3 2. The major components in the temperature calculation are shown in three figures. Heat
photoelectrons (olive), exothermic ion recombination and ion-neutral ‘;,izz : conduction increases dramatically with solar soft X-ray irradiance. This is caused by
reactions (black), joule heating ( ) and thermal collisions of 2 s00E _ increase in heat transfer by ions and electrons. The effect by electrons is especially
neutrals with ions and electrons (purple) 2005557 — significant.

Ty e e YRRy 3. Electron densities increase at all altitudes due to increase in solar soft X-ray irradiance.

Heating rates (ergs g~' s™') for Scaling factor of 1

Ambipolar diffusion leads to rapid upward transfer of electron densities. This leads to
the increased heating of the neutrals by electrons.
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4. Based on the above results, a
we estimate the impact of a Uncertainity in Exospheric Temperature (K)

D. The same analysis performed in box C is performed with the scaling applied only to the important 30.4 nm solar emission. It Jn Exospheric e
factor-of-two uncertainty in

is well documented that this emission plays a key role in the thermosphere and ionosphere. Comparison of the above < 600¢ T
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