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Abstract A large neutral temperature enhancement (=500 K) and neutral temperature inversion layer (NTIL) around 130 km are observed by the Fe Boltzmann lidar at McMurdo (78" S, 166" E), Antarctica, on 28 May 2011. The NTIL has a highly-

structured vertical variation and the peak temperature exceeds 1000 K, which suggests strong localized energy deposition. None of empirical models and default physics models capture such observations, and the formation mechanism is unknown. We use
TIEGCM driven by AMIE and constrained by various kinds of observations to explore the physical processes leading to NTIL and the underlying MIT coupling processes. The aurora precipitation maps observed by DMSP/SSUSI are incorporated since the
empirical auroral model in TIEGCM tends to underestimate both energy flux and mean energy. The electric field variabilities, commonly seen Iin a parameterized way Iin TIEGCM, are reconsidered and implemented in a more self-consistent way. Using more
realistic auroral maps together with enhanced electric field variablilities, TIEGCM succeeds In reproducing NTIL near 150 km. In particular, the introduction of electric field variabilities significantly enhances localized Joule heating, which results in strong
upward motion of the atmosphere. The resultant cooling effect from work Is stronger at higher altitude, leading to significant temperature decrease at ~200 km compared with ~150 km, where Joule heating dominates. The analysis of the thermodynamics
equation shows that such differential cooling effect Is crucial to the formation of the NTIL, while strong Joule heating is the trigger. Our work demonstrates that the variability of electric field could cause significant increase of energy deposition locally with
magnetospheric origin that dramatically changes neutral dynamics in the lower thermosphere. The sensitivity of our results to model resolution and gravity waves propagating from the lower atmosphere will be our future work.
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