

ABSTRACT

The Polar Mesospheric Clouds (PMC) measurements can help us understand better how the solar cycle can impact our upper and middle atmosphere. It also provides a tracer to monitor the climate change in this region, and study atmospheric dynamics. This project aims to analyze the PMC data collected from an Fe Boltzmann temperature lidar, located at Arrival Heights (77.84S, 166.67E) near McMurdo, Antarctica and operated by the University of Colorado at Boulder. The lidar team has managed to collect data continuously for 9 seasons, beginning in December 2010. These consecutive years of data allows us to register the main characteristics of Polar Mesospheric Clouds, as well as their occurrence in this latitude. The aim of this endeavor is to analyze the data from December, January, and February 2019. The main aspects to be studied under these conditions include inter-annual, seasonal, diurnal variations to PMC conditions and, afterwards, extrapolate significant behavior. It will try to build upon Chu et al. [2003], [2006], and [2011] to consolidate data and identity some possible Solar Cycle relationship. It is also important to note the mounting evidence for the anti-correlation between PMC brightness and centroid altitude supporting Chu et al. [2006]. Both the seasonal averages and non-averaged data points have a statistically significant anti-correlation. In addition, the solar cycle analysis had interesting results. There was no clear signature of anti-correlation. In addition, the solar cycle analysis had interesting results. There was no clear signature of anti-correlation between Lyman-alpha irradiance at 121.5nm and total backscatter coefficient. These findings support Hervig et al. [2016], where water anomaly is greatly diminished after 2005. Solar cycle response isn't nearly as strong as previous cycles. There might be some inter-atmospheric coupling effects, such as QBOs and Polar vortexes.

Data Overview

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	
Total Observational Hours	284	356	265	274	342	308	270	 -
Light-Medium-Strong PMC observation hours	76	189	138	136	166	159	166	ł
Medium-Strong PMC observation hours	73	122	96	95	76	107	130	4

- counting error at the peak: $\beta_{max} > 2\Delta\beta(z_{max})$
- noise : $\beta_{max} > 1.5 stdnoise$

Nine-Year Survey (2010 - 2019) of Polar Mesospheric Clouds over McMurdo, Antarctica Manuel da Costa Lindo, Mattia Astarita, Zimu Li, Ian Geraghty, and Xinzhao Chu CIRES & Aerospace, University of Colorado Boulder

-14	2014-15	2015-16	2016-17	2017-18	2018-19	Overall Mear
)±1.5	29.81 <u>+</u> 1.7	28.46 <u>+</u> 1.2	30.50±1.4	31.73 <u>+</u> 1.7	30.65±1.1	31.44 <u>+</u> 0.5
<u>+</u> 0.1	1.52 <u>+</u> 0.1	1.67 <u>±</u> 0.1	2.16 <u>+</u> 0.1	1.71 <u>+</u> 0.1	1.79 <u>±</u> 0.1	1.85 <u>+</u> 0.03
<u>+</u> 0.2	2.88 <u>+</u> 0.2	3.19 <u>+</u> 0.2	4.28 <u>±</u> 0.3	3.21 <u>+</u> 0.3	3.58±0.2	3.71 <u>+</u> 0.11
5±0.2	84.81 <u>+</u> 0.2	84.78 <u>+</u> 0.2	84.14 <u>+</u> 0.1	84.89 ±0.3	84.72 <u>±</u> 0.1	84.62 <u>±</u> 0.05
<u>+</u> 0.02	0.79 <u>+</u> 0.02	0.78 <u>±</u> 0.02	0.80±0.02	0.84 <u>±</u> 0.03	0.83 ± 0.02	0.84 <u>±</u> 0.01
)%	48.53%	51.72%	61.49%	39.92%	47.78%	48.23%
to 27FB	1NV to 28FB	8NV to 27FB	3DC to 20FB	4NV to 14FB	7NV to 28FB	
.4	2014-15	2015-16	2016-17	2017-18	2018-19	Overall Mear
.4 _1.7	2014-15 32.82±2.5	2015-16 31.82±1.6	2016-17 33.58 <u>+</u> 1.6	2017-18 33.07±2.0	2018-19 32.45±1.1	Overall Mean 33.57 <u>+</u> 0.6
.4 _1.7).1	2014-15 32.82±2.5 1.73±0.1	2015-16 31.82±1.6 1.97±0.1	2016-17 33.58±1.6 2.47±0.1	2017-18 33.07±2.0 2.00±0.1	2018-19 32.45±1.1 2.01±0.1	Overall Mear 33.57±0.6 2.10±0.03
.4 <u>-</u> 1.7).1).2	2014-15 32.82 \pm 2.5 1.73 \pm 0.1 3.21 \pm 0.3	2015-16 31.82 \pm 1.6 1.97 \pm 0.1 3.85 \pm 0.3	2016-17 33.58±1.6 2.47±0.1 4.96±0.3	2017-18 33.07 \pm 2.0 2.00 \pm 0.1 3.78 \pm 0.3	2018-19 32.45 \pm 1.1 2.01 \pm 0.1 4.08 \pm 0.2	Overall Mear 33.57±0.6 2.10±0.03 4.25±0.06
.4 _1.7).1).2 _0.2	2014-15 32.82 \pm 2.5 1.73 \pm 0.1 3.21 \pm 0.3 85.15 \pm 0.2	2015-16 31.82 \pm 1.6 1.97 \pm 0.1 3.85 \pm 0.3 84.63 \pm 0.3	2016-17 33.58 \pm 1.6 2.47 \pm 0.1 4.96 \pm 0.3 84.19 \pm 0.1	2017-18 33.07 \pm 2.0 2.00 \pm 0.1 3.78 \pm 0.3 84.61 \pm 0.3	2018-19 32.45 \pm 1.1 2.01 \pm 0.1 4.08 \pm 0.2 84.72 \pm 0.1	Overall Mear 33.57±0.6 2.10±0.03 4.25±0.06 84.61±0.04
.4 _1.7 0.1 0.2 _0.2 0.03	2014-15 32.82 \pm 2.5 1.73 \pm 0.1 3.21 \pm 0.3 85.15 \pm 0.2 0.76 \pm 0.03	2015-16 31.82 \pm 1.6 1.97 \pm 0.1 3.85 \pm 0.3 84.63 \pm 0.3 0.81 \pm 0.03	2016-17 33.58 \pm 1.6 2.47 \pm 0.1 4.96 \pm 0.3 84.19 \pm 0.1 0.84 \pm 0.02	2017-18 33.07 \pm 2.0 2.00 \pm 0.1 3.78 \pm 0.3 84.61 \pm 0.3 0.85 \pm 0.04	2018-19 32.45 \pm 1.1 2.01 \pm 0.1 4.08 \pm 0.2 84.72 \pm 0.1 0.85 \pm 0.02	Overall Mean 33.57±0.6 2.10±0.03 4.25±0.06 84.61±0.04 0.85±0.01
.4 <u>-</u> 1.7 0.1 0.2 <u>-</u> 0.2 0.03	2014-15 32.82 \pm 2.5 1.73 \pm 0.1 3.21 \pm 0.3 85.15 \pm 0.2 0.76 \pm 0.03 22.22%	2015-16 31.82 \pm 1.6 1.97 \pm 0.1 3.85 \pm 0.3 84.63 \pm 0.3 0.81 \pm 0.03 34.74%	2016-17 33.58 \pm 1.6 2.47 \pm 0.1 4.96 \pm 0.3 84.19 \pm 0.1 0.84 \pm 0.02 48.15%	2017-18 33.07 \pm 2.0 2.00 \pm 0.1 3.78 \pm 0.3 84.61 \pm 0.3 0.85 \pm 0.04 23.38%	2018-19 32.45 \pm 1.1 2.01 \pm 0.1 4.08 \pm 0.2 84.72 \pm 0.1 0.85 \pm 0.02 36.82%	Overall Mean 33.57±0.6 2.10±0.03 4.25±0.06 84.61±0.04 0.85±0.01 32.90%

IRE.

Figure 6 - Comparison of mean altitudes of PMCs, total backscatter, layer RMS width, and occurrence frequency versus latitude for South Pole (90°S), McMurdo(78°S), and Rothera (67.5 °S) confirming the findings in *Chu et al.* [2011].

