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Use of these three indices, which are jointly available back to 1947, allows us to
construct a time history of NO and CO, cooling back more than 70 years (below),

covering five complete solar cycles (SC 19-23) and portions of two others (SC 18 and : : |
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SABER was launched in December 2001 and began making measurements in January

2002. From these radiance measurements, we have 17+ years (more than 8.9 million .
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scans/channel of derived cooling rate profiles, scan fluxes and global daily infrared that the total power is very similar despite the visual differences between solar cycles. g% 10§ g0 o g
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= Visual correlations between the Ap, F10.7, and Dst indices and NO power are evident
in the 60-day running means shown below.

» These strongly suggest that the NO (and CO,) power time series can be fit with a
multiple linear regression involving these three standard solar and geomagnetic
indices.
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Comparison of NO, CO,, Ap, and F10.7 60-day Running Averages

In 2009 and 2018
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SC 24 to date is energetically weaker than the
five previous solar cycles. These plots show that:
= NO global daily power values (a) are mostly
not yet at the low levels reached during the :
last solar minimum S I R
" This is due to the consistently higher 2018
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= This is partly a result of higher F10.7 in much
of 2018 coupled with the semi-annual
oscillation coincidence
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