

FIRST STATISTICAL STUDY OF BLANKETING SPORADIC E OVER THE JICAMARCA RADIO OBSERVATORY USING IMAGE PROCESSING TECHNIQUES AND MACHINE LEARNING ALGORITHMS

J. Suclupe¹ (jose.suclupe@jro.igp.gob.pe), E. Pacheco¹, P. Cóndor¹ and D. Cárdenas²

¹ Jicamarca Radio Observatory, Geophysical Institute of Peru ² Physic Professional School of Science Faculty, Engineering National University

minimum frequency of ionogram echoes due mainly to absorbance of the D-region. Esb events could be classified as rare events, low latitude regions, and equatorial electrojet echoes often overla with Esb echoes. A common methodology to identify Esb event have been done visually. We developed an algorithm an implemented a software to identify Esb events using image processing techniques and machine learning algorithms getting sensitivity of 89% in its first version. Furthermore, we obtained the ΔH between Jicamarca and Piura to measure the intensity equatorial electrojet and counter electrojet and its behaviour in tim when Esb occurs. Finally, we have used the model of Muralikrishr et al. (2008) to discuss possible conditions that favor the formatic of blanketing sporadic E.

The "Blanketing Sporadic E" layers

Sporadic E layers (Es):

- "Es" are regions of increased electron density, observed in the E region and made up of metal ions. Blanketing sporadic E layers (Esb):
- "Es" are type blanketing (Esb) when they can partially or completely block the radio waves at the frequencies transmitted by the ionosonde for the sounding of the upper ionosphere (between 1.0 MHz and 14.0 MHz).

ionograms of E region		identified Es in clusters	(nEs) and first multiple of F layer (1F)	when there is spread-F and F layer	scenery: Spread F, F layer or no echoes	a time series of fminF
Image: constraint of the segmentation applied to image of the segment	V1=(0.992, -0.126) A1=12.5 V2=(0.126, 0.992) A2=0.2 V1=(0.997, -0.081) A1=73.9 V2=(0.081, 0.997) A2=3.0 V1=(0.997, -0.077) A1=39.7 V2=(0.077, 0.997) A2=0.67 Figure 4. PCA applied to each cluster	Tree 1 Tree 2 Tree n Es No Es No Es majority vote	Figure 6. Filter to delete multiples Esb (nEs) and first multiple of F layer (1F)	⁴ ⁵ ⁸	September August July June May April March February January Evaluary Difference of the second sec	i i
This algorithm separates the echoes of the E region in clusters. One cluster stores Esb echoes and the rest of clusters stores the equatorial electrojet echoes. The former is characterized by being more intense.	To obtain the axes of maximum dispersion in order to obtain the slope of the Esb trace and a parameter associated with the width of the Esb layer, if any.	Ten explanatory variables corresponding to the Es characteristics were used, such as their heights, slope, layer width, maximum intensity and others in order to predict the presence of Es layers.	This filter is carried out in order to eliminate the multiples of the Es (F) layer due to multiple reflections between the Es (F) layer and the earth. $\int_{10^{4} \text{ Ge}_{60}}^{10^{4} \text{ Ge}_{60}} \int_{10^{4} \text{ Ge}_{60}}^{10^{4} \text{ Ge}_{60}}^{10^{4} \text{ Ge}_{60}}^{10^{4} \text{ Ge}_{60}} \int_{10^{4} \text{ Ge}_{60}}^{10^{4} \text{ Ge}_{60$	ver obtain the following two cases: a) when there is presence of layer F, in some of the clusters a defined trace will be obtained and b) when there is spread-F, dispersed pixels will be obtained in all the clusters.	Measuring the dispersion in the clusters, we obtain a characterization of the F region in ionograms, therefore if there is presence of spread-F, or only F layer or if there are no significant echoes in the F region. Characterization of the F region - 2008	identified in order to find t minimum frequency of the layer and obtain a time seri of these minimu frequencies. We used a ro- model for scaling t ionograms.
FUZZY C MEANS (FCM)	PRINCIPAL COMPONENT ANALYSIS (PCA)	RANDOM FOREST	ELIMINATION OF MULTIPLES ES (nES) AND 1 MULTIPLE F (1F)	SEGMENTATION: FUZZY C MEANS (FCM)	CHARACTERIZATION OF F REGION	SCALED OF F LAYER: ROTOR MODEL

Station: Jicamarca Radio Observatory (JRO) Latitude: 11,95° S, Longitude: 76,87° W

lonograms on April 5, 2008

Ionograms with sporadic E layers identified

Results

