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Goal and motivation Data Assimilation—-Ensemble Adjustment Kalman Moderate storm in March 2009 +  Experiment Period: UT
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Data assimilation can help quantify the effects of these energy

sources by combining multiple types of observations and first- OO08 U100 U102
principles models. Sonsl
COSMIC electron density and C/NOFS ion velocity data are ol | - 1
assimilated into the TIE-GCM to provide a comprehensive
vision of variability of ionospheric electrodynamics. . :
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A= (I — KkH) - adjustment matrix A computed by SVD difference between the TEC w/ and w/o the impact of data assimilation, respectively.

Challenge 1. How to generate ensemble that Challenge 2. How to compute the innovation Summary and future work
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retlects realistic uncertalnty of model forecasts: Ymodel — Yobs' Step |.Using Python Satellite Data Analysis Tookit (PysatMagVect) In comparison t(? C/N.OFS 'on Vel?CIty observatl.ons, TIE
™ del ble ced b curbine: to map the ExB drift from C/NOFS location to 120 km GCM ensemble simulations underestimate equatorial plasma
€ mogel ensemble 1S generated by perturbing: altitude according to the APEX coordinate with the drift velocities especially in the zonal direction. A more
. Solar irradiance — F10.7 index assumption of equal-potential along geomagnetic field. comparison is needed to assess the model biases.
FI0.7 index is perturbed according to Gaussian distribution . . _ : : : .. :
with standard deviation and mean given from the variance and Step 2. Interpolating TIE-GCM ExB drift horizontally from model C/NOFS ion velocity observations can be assimilated into
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2. Forcing from the magnetosphere- Assimilative ® C/NOFS . 5ol ] equatorial region
Mapping of Geospace Observations g ol ] ] COSMIC electron density data will be assimilated to
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Mapping of Geospace Observations and is perturbed according | 150 km—+— Zonal Drift Meridional Drift Vertical Drift Further physical constraints need to be considered to
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to a multivariate normal distribution with the mean and Step 2
covariance estimated from assimilative mapping results from 12

to 18 March 2009.

3. Forcing from the lower atmosphere - TIME-GCM
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