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Result 3: Impacts of small-scale variabilities on Joule heating
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Abstract: The correlation between high-latitude electric field and particle

precipitation has important implications on M-I-T system but has not
been well quantified yet. In this study, such correlation is quantified for
dominant southward IMF Bz cases. We found that the correlation
depends on the location and the scale. Particularly on the small-scale
(<500 km), the electric field is generally anti-correlated with the particle
precipitation. Additionally, it is found that the impacts associated with
the anti-correlation between the small-scale electric field and particle
precipitation on Joule heating is not negligible from the simulation.
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electric field: Distribution? Scale-dependence? (a)Large scale (b)Small scale Fig 4d indicates that the localized reduction can reach ~17.5% at
the dusk side, which is not negligible!
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Small-scale: The averages are much smaller than the standard deviations.

Investigate the impacts of the correlation between small-scale 12

electric field and particle precipitation on Joule heating. S
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High-latitude electric field and particle precipitation:
Their correlation depends on the location as well as the scale;
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Solves for:

Retarding Potential } [R'dlevetal 2006]

lation coefficient

On small scale, they are generally anti-correlated (- Current
generator on small scale).
Impacts of the small-scale electric field and particle
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Fig 3. Distributions of correlation between particle energy flux and electric field

intensity on (a) Large scale (b) Small scale.

Correlation distribution differs on different scales:

Large scale: Positive correlation mostly in post-midnight and morning side
Also below 60°, almost all MLT;
Anti-correlation mostly in pre-midnight and afternoon side.

precipitation variabilities on Joule heating:
The small-scale electric field variability leads to a significant
enhancement in Joule heating;
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The anti-correlation between the small-scale particle
precipitation and the small-scale electric field results in an overall
5% decrease in Joule heating. But the localized reduction can
reach 17.5 %, which is not negligible.

Small scale: Anti-correlation in general.



