

Data-Model Comparisons of Updated Auroral Conductance Model in SWMF

Agnit Mukhopadhyay¹, Daniel T Welling, Shasha Zou & Michael W Liemohn **Climate and Space Sciences and Engineering, University of Michigan** ¹Contact : agnitm@umich.edu

KEY QUESTION:

Can accurate conductance during extreme events better predict high dB/dt on ground?

Scientific Background

- Ionospheric conductance (Σ) is a key factor in M-I coupling.
- Predicting auroral (precipitative) conductance is a challenge in global MHD models. Most use an empirical formulation based on precipitation ^[5, 7, 10].
- Recent studies indicate global models to be under-predicting ground-based dB/dt due to incorrect conductance predictions during <u>extreme events</u> ^[4, 9].

To remedy that, we have updated the empirical conductance model (ECM) in the SWMF^[8] to include extreme storm-time conductance.

425

(L 150

Щ 100

 $(\mu I)^{11}$

Щ 10

Time from 08-05-2011 04:00 U

Solar EUV

- Added as a function of solar zenith angle.
- Dependent on an
- absorption function to estimate photoionization.
- Added as an empirical function in most models.

Auroral

- Dependent on particle

distribution function and

loss cone.

Spacer

Updated Empirical Conductance Model

 Σ_H (AMIE)

- Auroral Conductance in the SWMF are empirical maps^[7] dependent on FAC distributions of the following form derived from AMIE^[6]: $\Sigma = \Sigma_0 e^{-A_2^2 |J_{\parallel}|}$
- In the updated model, we changed the above exponential function to a robust three coefficient format: $\Sigma = A_0 - A_1 e^{-A_2^2 |J_1|}$

Representative Plots:

(Generated using FAC distribution for SWPC Event 1 from SWMF.)

 Σ_H (Old)

How do we calculate the coeffs?

 Σ_H (New)

- **For** A_0 and A_1 , a median based method is applied based on the binning of the FACs.
- **M** For A_2 , an LM Least Squares method^[3] is used to generate an initial value.
- **M** A minimized error approach decides the

Data-Model Verification of Conductance Model Through the new Σ_H (ECM2018) Σ_H (Ridley et al, 2004) Σ_H (AMIE) model, we have FAC J addressed the question of accurate conductance during extreme events. This is clearly visible on the Σ_P (AMIE) Σ_P (ECM2018) Σ_P (Ridley et al, 2004) nightside. SWPC Event 5

- final coefficient values.
- **W** Using above algorithm for each grid point (Lat x MLT), coefficient maps are made.
- **Old model is based on minute-resolution** AMIE data from January 1997. In the new model, data from the <u>whole year of 2003</u> has been used.

GOOD Easy to build, easy to remodel Computationally, simple!

Better predictions during extreme events

No precipitation physics included. Accurate conductance still not achieved.

Main Takeaway

īme from 08-05-2011 04:00 U

Using the updated conductance model, high dB/dt predictions have improved during extreme events.

Immediate tasks include a thorough data-model validation for stronger events, followed by the development of a physics-based model to estimate conductance employing the use of I-T and I-M models.

(1) Modeled Σ compared with AMIE results at the peak of Event 5. (2) Heidke Skill Score for Events 3, 5 and 6 for dB/dt thresholds^[4]. (3) List of SWPC Events^[4] with the event times and strengths. (4) Modeled FAC compared with AMPERE^[1] for Events 5 and 6. (5) Modeled dB/dt compared with obs. for Event 5 at varying latitude (6) Modeled Dst compared with Kyoto Dst obs. for Events 5 and 6.

<u>Acknowledgments</u>

Our thanks to Dr. Aaron Ridley, Ms. Abigail Azari, Mr. Christopher Bert and Mr. Zihan Wang for their crucial insights. We would like to thank the Los Alamos National Lab & NSF for sponsoring this work. This work was performed under the auspices of the US Department of Energy and was funded by the Laboratory Directed Research and

Development program (grant number 20170047DR).

References

[1] <u>Anderson et al (2017)</u>, 15(2), 352 – 373, *Space Weather* [2] Goodman (1995), 13(3), 843 – 853, Annales Geophysicae [3] <u>Pujol et al. (2007)</u>, 72(4), W1 – W16, *Geophysics* [4] Pulkkinen et al. (2013), 11(6), 369 – 385, *Space Weather* [5] <u>Raeder et al. (2001)</u>, 106(A1), *Journal of Geophy. Research – Space Phy.* [6] <u>Richmond and Kamide (1988)</u>, 93(A6), *Journal of Geophy. Research* [7] <u>Ridley et al. (2004)</u>, 22(2), 567 – 584, *Annales Geophysicae* [8] Toth et al. (2005), 110(A12), Journal of Geophy. Research [9] <u>Welling et al. (2017)</u>, 15(1), 192 - 203, *Space Weather* [10] Wiltberger et al. (2009), 114(1), Journal of Geophy. Res. - Space Phy.